These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 14611746)

  • 1. The role of renal proximal tubular cells in diabetic nephropathy.
    Phillips AO
    Curr Diab Rep; 2003 Dec; 3(6):491-6. PubMed ID: 14611746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of glomerular ultrafiltration of growth factors in progressive interstitial fibrosis in diabetic nephropathy.
    Wang SN; LaPage J; Hirschberg R
    Kidney Int; 2000 Mar; 57(3):1002-14. PubMed ID: 10720953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diabetic nephropathy: the central role of renal proximal tubular cells in tubulointerstitial injury.
    Phillips AO; Steadman R
    Histol Histopathol; 2002 Jan; 17(1):247-52. PubMed ID: 11813875
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Endocannabinoids and the renal proximal tubule: an emerging role in diabetic nephropathy.
    Jenkin KA; Verty AN; McAinch AJ; Hryciw DH
    Int J Biochem Cell Biol; 2012 Nov; 44(11):2028-31. PubMed ID: 22842535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The proximal tubule in the pathophysiology of the diabetic kidney.
    Vallon V
    Am J Physiol Regul Integr Comp Physiol; 2011 May; 300(5):R1009-22. PubMed ID: 21228342
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inactivation of TSC1 promotes epithelial-mesenchymal transition of renal tubular epithelial cells in mouse diabetic nephropathy.
    Lu Q; Chen YB; Yang H; Wang WW; Li CC; Wang L; Wang J; Du L; Yin XX
    Acta Pharmacol Sin; 2019 Dec; 40(12):1555-1567. PubMed ID: 31235817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrastructural and functional changes of the proximal tubular epithelial cells in the renal cortex from spontaneously diabetic KKAy mice.
    Ina K; Kitamura H; Nagai K; Tatsukawa S; Fujikura Y
    J Electron Microsc (Tokyo); 1999; 48(4):443-8. PubMed ID: 10510859
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth factor ultrafiltration in experimental diabetic nephropathy contributes to interstitial fibrosis.
    Wang SN; Hirschberg R
    Am J Physiol Renal Physiol; 2000 Apr; 278(4):F554-60. PubMed ID: 10751215
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The pathogenic role of the renal proximal tubular cell in diabetic nephropathy.
    Tang SC; Lai KN
    Nephrol Dial Transplant; 2012 Aug; 27(8):3049-56. PubMed ID: 22734110
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pathogenesis of the podocytopathy and proteinuria in diabetic glomerulopathy.
    Ziyadeh FN; Wolf G
    Curr Diabetes Rev; 2008 Feb; 4(1):39-45. PubMed ID: 18220694
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Do tubular changes in the diabetic kidney affect the susceptibility to acute kidney injury?
    Vallon V
    Nephron Clin Pract; 2014; 127(1-4):133-8. PubMed ID: 25343837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transforming Growth Factor Beta 1 Drives a Switch in Connexin Mediated Cell-to-Cell Communication in Tubular Cells of the Diabetic Kidney.
    Hills C; Price GW; Wall MJ; Kaufmann TJ; Chi-Wai Tang S; Yiu WH; Squires PE
    Cell Physiol Biochem; 2018; 45(6):2369-2388. PubMed ID: 29587265
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diabetic nephropathy: the modulating influence of glucose on transforming factor beta production.
    Phillips AO
    Histol Histopathol; 1998 Apr; 13(2):565-74. PubMed ID: 9589909
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alterations in tubular epithelial cells in diabetic nephropathy.
    Habib SL
    J Nephrol; 2013; 26(5):865-9. PubMed ID: 24052469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Connective tissue growth factor in tubulointerstitial injury of diabetic nephropathy.
    Wang S; Denichilo M; Brubaker C; Hirschberg R
    Kidney Int; 2001 Jul; 60(1):96-105. PubMed ID: 11422741
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sodium/glucose cotransporter 2 inhibitors and prevention of diabetic nephropathy: targeting the renal tubule in diabetes.
    De Nicola L; Gabbai FB; Liberti ME; Sagliocca A; Conte G; Minutolo R
    Am J Kidney Dis; 2014 Jul; 64(1):16-24. PubMed ID: 24673844
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Praliciguat inhibits progression of diabetic nephropathy in ZSF1 rats and suppresses inflammation and apoptosis in human renal proximal tubular cells.
    Liu G; Shea CM; Jones JE; Price GM; Warren W; Lonie E; Yan S; Currie MG; Profy AT; Masferrer JL; Zimmer DP
    Am J Physiol Renal Physiol; 2020 Oct; 319(4):F697-F711. PubMed ID: 32865013
    [TBL] [Abstract][Full Text] [Related]  

  • 18. miR-21 promotes renal fibrosis in diabetic nephropathy by targeting PTEN and SMAD7.
    McClelland AD; Herman-Edelstein M; Komers R; Jha JC; Winbanks CE; Hagiwara S; Gregorevic P; Kantharidis P; Cooper ME
    Clin Sci (Lond); 2015 Dec; 129(12):1237-49. PubMed ID: 26415649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tubular changes in early diabetic nephropathy.
    Thomas MC; Burns WC; Cooper ME
    Adv Chronic Kidney Dis; 2005 Apr; 12(2):177-86. PubMed ID: 15822053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased sphingosine 1-phosphate mediates inflammation and fibrosis in tubular injury in diabetic nephropathy.
    Yaghobian D; Don AS; Yaghobian S; Chen X; Pollock CA; Saad S
    Clin Exp Pharmacol Physiol; 2016 Jan; 43(1):56-66. PubMed ID: 26414003
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.