BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 14611802)

  • 1. Quantitative comparison of cDNA-AFLP, microarrays, and GeneChip expression data in Saccharomyces cerevisiae.
    Reijans M; Lascaris R; Groeneger AO; Wittenberg A; Wesselink E; van Oeveren J; de Wit E; Boorsma A; Voetdijk B; van der Spek H; Grivell LA; Simons G
    Genomics; 2003 Dec; 82(6):606-18. PubMed ID: 14611802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved coverage of cDNA-AFLP by sequential digestion of immobilized cDNA.
    Weiberg A; Pöhler D; Morgenstern B; Karlovsky P
    BMC Genomics; 2008 Oct; 9():480. PubMed ID: 18851732
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AFLP-based transcript profiling (cDNA-AFLP) for genome-wide expression analysis.
    Vuylsteke M; Peleman JD; van Eijk MJ
    Nat Protoc; 2007; 2(6):1399-413. PubMed ID: 17545977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Technical advances: genome-wide cDNA-AFLP analysis of the Arabidopsis transcriptome.
    Volkmuth W; Turk S; Shapiro A; Fang Y; Kiegle E; van Haaren M; Donson J
    OMICS; 2003; 7(2):143-59. PubMed ID: 14506844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of cDNA-AFLP experiments using genomic sequence data.
    Kivioja T; Arvas M; Saloheimo M; Penttilä M; Ukkonen E
    Bioinformatics; 2005 Jun; 21(11):2573-9. PubMed ID: 15774551
    [TBL] [Abstract][Full Text] [Related]  

  • 6. cDNA-AFLP-based transcript profiling for genome-wide expression analysis of jasmonate-treated plants and plant cultures.
    Colling J; Pollier J; Makunga NP; Goossens A
    Methods Mol Biol; 2013; 1011():287-303. PubMed ID: 23616005
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improvement of the cDNA-AFLP method using fluorescent primers for transcription analysis in bacteria.
    Decorosi F; Viti C; Mengoni A; Bazzicalupo M; Giovannetti L
    J Microbiol Methods; 2005 Nov; 63(2):211-5. PubMed ID: 15939496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GenEST, a powerful bidirectional link between cDNA sequence data and gene expression profiles generated by cDNA-AFLP.
    Qin L; Prins P; Jones JT; Popeijus H; Smant G; Bakker J; Helder J
    Nucleic Acids Res; 2001 Apr; 29(7):1616-22. PubMed ID: 11266565
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of an efficient restriction enzyme combination for cDNA-AFLP analysis in Festuca mairei and evaluation of the identity of transcript-derived fragments.
    Wang JP; Bughrara SS
    Mol Biotechnol; 2005 Mar; 29(3):211-20. PubMed ID: 15767698
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative cDNA-AFLP analysis for genome-wide expression studies.
    Breyne P; Dreesen R; Cannoot B; Rombaut D; Vandepoele K; Rombauts S; Vanderhaeghen R; Inzé D; Zabeau M
    Mol Genet Genomics; 2003 May; 269(2):173-9. PubMed ID: 12756529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Linking cDNA-AFLP-based gene expression patterns and ESTs.
    Qin L; Prins P; Helder J
    Methods Mol Biol; 2006; 317():123-38. PubMed ID: 16264226
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Components of variance in transcriptomics based on electrophoretic separation of cDNA fragments (cDNA-AFLP).
    Weiberg A; Karlovsky P
    Electrophoresis; 2009 Jul; 30(14):2549-57. PubMed ID: 19588459
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: analysis of gene expression during potato tuber development.
    Bachem CW; van der Hoeven RS; de Bruijn SM; Vreugdenhil D; Zabeau M; Visser RG
    Plant J; 1996 May; 9(5):745-53. PubMed ID: 8653120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A cDNA-AFLP based strategy to identify transcripts associated with avirulence in Phytophthora infestans.
    Guo J; Jiang RH; Kamphuis LG; Govers F
    Fungal Genet Biol; 2006 Feb; 43(2):111-23. PubMed ID: 16455274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation of genes related to abscisic acid production in Botrytis cinerea TB-3-H8 by cDNA-AFLP.
    Gong T; Shu D; Zhao M; Zhong J; Deng HY; Tan H
    J Basic Microbiol; 2014 Mar; 54(3):204-14. PubMed ID: 23456640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Yeast microarrays for genome wide parallel genetic and gene expression analysis.
    Lashkari DA; DeRisi JL; McCusker JH; Namath AF; Gentile C; Hwang SY; Brown PO; Davis RW
    Proc Natl Acad Sci U S A; 1997 Nov; 94(24):13057-62. PubMed ID: 9371799
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Eukaryotic transcriptomics in silico: optimizing cDNA-AFLP efficiency.
    Stölting KN; Gort G; Wüst C; Wilson AB
    BMC Genomics; 2009 Nov; 10():565. PubMed ID: 19948029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The utility of amplified fragment length polymorphisms in phylogenetics: a comparison of homology within and between genomes.
    Althoff DM; Gitzendanner MA; Segraves KA
    Syst Biol; 2007 Jun; 56(3):477-84. PubMed ID: 17562471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The human and mouse homologs of the yeast RAD52 gene: cDNA cloning, sequence analysis, assignment to human chromosome 12p12.2-p13, and mRNA expression in mouse tissues.
    Shen Z; Denison K; Lobb R; Gatewood JM; Chen DJ
    Genomics; 1995 Jan; 25(1):199-206. PubMed ID: 7774919
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A format for databasing and comparison of AFLP fingerprint profiles.
    Hong Y; Chuah A
    BMC Bioinformatics; 2003 Feb; 4():7. PubMed ID: 12600280
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.