These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 14611935)

  • 1. Assessing structural elements that influence Schiff base stability: mutants E113Q and D190N destabilize rhodopsin through different mechanisms.
    Janz JM; Farrens DL
    Vision Res; 2003 Dec; 43(28):2991-3002. PubMed ID: 14611935
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of the retinal hydrogen bond network in rhodopsin Schiff base stability and hydrolysis.
    Janz JM; Farrens DL
    J Biol Chem; 2004 Dec; 279(53):55886-94. PubMed ID: 15475355
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of the retinylidene Schiff base counterion in rhodopsin in determining wavelength absorbance and Schiff base pKa.
    Sakmar TP; Franke RR; Khorana HG
    Proc Natl Acad Sci U S A; 1991 Apr; 88(8):3079-83. PubMed ID: 2014228
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal stability of rhodopsin and progression of retinitis pigmentosa: comparison of S186W and D190N rhodopsin mutants.
    Liu MY; Liu J; Mehrotra D; Liu Y; Guo Y; Baldera-Aguayo PA; Mooney VL; Nour AM; Yan EC
    J Biol Chem; 2013 Jun; 288(24):17698-712. PubMed ID: 23625926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoisomerization efficiency in UV-absorbing visual pigments: protein-directed isomerization of an unprotonated retinal Schiff base.
    Tsutsui K; Imai H; Shichida Y
    Biochemistry; 2007 May; 46(21):6437-45. PubMed ID: 17474760
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid release of retinal from a cone visual pigment following photoactivation.
    Chen MH; Kuemmel C; Birge RR; Knox BE
    Biochemistry; 2012 May; 51(20):4117-25. PubMed ID: 22217337
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Light-dependent transducin activation by an ultraviolet-absorbing rhodopsin mutant.
    Fahmy K; Sakmar TP
    Biochemistry; 1993 Sep; 32(35):9165-71. PubMed ID: 8396426
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FTIR study of the photoreaction of bovine rhodopsin in the presence of hydroxylamine.
    Katayama K; Furutani Y; Kandori H
    J Phys Chem B; 2010 Jul; 114(27):9039-46. PubMed ID: 20557105
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photosensitivities of rhodopsin mutants with a displaced counterion.
    Tsutsui K; Shichida Y
    Biochemistry; 2010 Nov; 49(47):10089-97. PubMed ID: 21038858
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural impact of the E113Q counterion mutation on the activation and deactivation pathways of the G protein-coupled receptor rhodopsin.
    Standfuss J; Zaitseva E; Mahalingam M; Vogel R
    J Mol Biol; 2008 Jun; 380(1):145-57. PubMed ID: 18511075
    [TBL] [Abstract][Full Text] [Related]  

  • 11. pH dependence of photolysis intermediates in the photoactivation of rhodopsin mutant E113Q.
    Lewis JW; Szundi I; Fu WY; Sakmar TP; Kliger DS
    Biochemistry; 2000 Jan; 39(3):599-606. PubMed ID: 10642185
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical kinetic analysis of thermal decay of rhodopsin reveals unusual energetics of thermal isomerization and hydrolysis of Schiff base.
    Liu J; Liu MY; Fu L; Zhu GA; Yan ECY
    J Biol Chem; 2011 Nov; 286(44):38408-38416. PubMed ID: 21921035
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transducin activation by rhodopsin without a covalent bond to the 11-cis-retinal chromophore.
    Zhukovsky EA; Robinson PR; Oprian DD
    Science; 1991 Feb; 251(4993):558-60. PubMed ID: 1990431
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Absorption studies of neutral retinal Schiff base chromophores.
    Nielsen IB; Petersen MA; Lammich L; Nielsen MB; Andersen LH
    J Phys Chem A; 2006 Nov; 110(46):12592-6. PubMed ID: 17107108
    [TBL] [Abstract][Full Text] [Related]  

  • 15. pH-dependent absorption spectra of rhodopsin mutant E113Q: On the role of counterions and protein.
    Xie P; Zhou P; Alsaedi A; Zhang Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Mar; 174():25-31. PubMed ID: 27865136
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Slow binding of retinal to rhodopsin mutants G90D and T94D.
    Gross AK; Xie G; Oprian DD
    Biochemistry; 2003 Feb; 42(7):2002-8. PubMed ID: 12590587
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the mutant visual pigment responsible for congenital night blindness: a biochemical and Fourier-transform infrared spectroscopy study.
    Zvyaga TA; Fahmy K; Siebert F; Sakmar TP
    Biochemistry; 1996 Jun; 35(23):7536-45. PubMed ID: 8652533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alkylated hydroxylamine derivatives eliminate peripheral retinylidene Schiff bases but cannot enter the retinal binding pocket of light-activated rhodopsin.
    Piechnick R; Heck M; Sommer ME
    Biochemistry; 2011 Aug; 50(33):7168-76. PubMed ID: 21766795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative Mutagenesis Studies of Retinal Release in Light-Activated Zebrafish Rhodopsin Using Fluorescence Spectroscopy.
    Morrow JM; Chang BS
    Biochemistry; 2015 Jul; 54(29):4507-18. PubMed ID: 26098991
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anions stabilize a metarhodopsin II-like photoproduct with a protonated Schiff base.
    Vogel R; Fan GB; Siebert F; Sheves M
    Biochemistry; 2001 Nov; 40(44):13342-52. PubMed ID: 11683644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.