These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

49 related articles for article (PubMed ID: 14612335)

  • 1. The prediction of methylmercury elimination half-life in humans using animal data: a neural network/rough sets analysis.
    Hashemi RR; Young JF
    J Toxicol Environ Health A; 2003 Dec; 66(23):2227-52. PubMed ID: 14612335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of methylmercury disposition in humans utilizing a PBPK model and animal pharmacokinetic data.
    Young JF; Wosilait WD; Luecke RH
    J Toxicol Environ Health A; 2001 May; 63(1):19-52. PubMed ID: 11346132
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of the interindividual variability in the one-compartment pharmacokinetic model for methylmercury: implications for the derivation of a reference dose.
    Stern AH
    Regul Toxicol Pharmacol; 1997 Jun; 25(3):277-88. PubMed ID: 9237329
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of spontaneous ureteral calculous passage by an artificial neural network.
    Cummings JM; Boullier JA; Izenberg SD; Kitchens DM; Kothandapani RV
    J Urol; 2000 Aug; 164(2):326-8. PubMed ID: 10893576
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of artificial neural networks to establish a predictive mortality risk model in children admitted to a paediatric intensive care unit.
    Chan CH; Chan EY; Ng DK; Chow PY; Kwok KL
    Singapore Med J; 2006 Nov; 47(11):928-34. PubMed ID: 17075658
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of death for extremely low birth weight neonates.
    Ambalavanan N; Carlo WA; Bobashev G; Mathias E; Liu B; Poole K; Fanaroff AA; Stoll BJ; Ehrenkranz R; Wright LL;
    Pediatrics; 2005 Dec; 116(6):1367-73. PubMed ID: 16322160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Risk factor identification and mortality prediction in cardiac surgery using artificial neural networks.
    Nilsson J; Ohlsson M; Thulin L; Höglund P; Nashef SA; Brandt J
    J Thorac Cardiovasc Surg; 2006 Jul; 132(1):12-9. PubMed ID: 16798296
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Applying an artificial neural network to warfarin maintenance dose prediction.
    Solomon I; Maharshak N; Chechik G; Leibovici L; Lubetsky A; Halkin H; Ezra D; Ash N
    Isr Med Assoc J; 2004 Dec; 6(12):732-5. PubMed ID: 15609884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of an artificial neural network model to predict delayed decrease of serum creatinine in pediatric patients after kidney transplantation.
    Santori G; Fontana I; Valente U
    Transplant Proc; 2007; 39(6):1813-9. PubMed ID: 17692620
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toxicokinetics of mercuric chloride and methylmercuric chloride in mice.
    Nielsen JB
    J Toxicol Environ Health; 1992 Sep; 37(1):85-122. PubMed ID: 1522616
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accuracy of serum gentamicin concentration predictions generated by a personal-computer software system.
    Robinson JD; Hatton RC; Russell WL; Klapp D; Lopez LM
    Clin Pharm; 1984; 3(5):509-16. PubMed ID: 6548429
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimating pesticide field half-lives from a backpropagation neural network.
    Domine D; Devillers J; Chastrette M; Karcher W
    SAR QSAR Environ Res; 1993; 1(2-3):211-9. PubMed ID: 8790634
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics of methylmercury and inorganic mercury in lactating and nonlactating mice.
    Sundberg J; Jönsson S; Karlsson MO; Hallén IP; Oskarsson A
    Toxicol Appl Pharmacol; 1998 Aug; 151(2):319-29. PubMed ID: 9707508
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Artificial neural networks for predicting failure to survive following in-hospital cardiopulmonary resuscitation.
    Ebell MH
    J Fam Pract; 1993 Mar; 36(3):297-303. PubMed ID: 8454976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impaired biliary excretion and whole body elimination of methylmercury in rats with congenital defect in biliary glutathione excretion.
    Ballatori N; Gatmaitan Z; Truong AT
    Hepatology; 1995 Nov; 22(5):1469-73. PubMed ID: 7590665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rough set feature selection and rule induction for prediction of malignancy degree in brain glioma.
    Wang X; Yang J; Jensen R; Liu X
    Comput Methods Programs Biomed; 2006 Aug; 83(2):147-56. PubMed ID: 16893588
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An artificial neural network for prostate cancer staging when serum prostate specific antigen is 10 ng./ml. or less.
    Zlotta AR; Remzi M; Snow PB; Schulman CC; Marberger M; Djavan B
    J Urol; 2003 May; 169(5):1724-8. PubMed ID: 12686818
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of serum protein fingerprinting coupled with artificial neural network model in diagnosis of hepatocellular carcinoma.
    Wang JX; Zhang B; Yu JK; Liu J; Yang MQ; Zheng S
    Chin Med J (Engl); 2005 Aug; 118(15):1278-84. PubMed ID: 16117882
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relating formulation variables to in vitro dissolution using an artificial neural network.
    Ebube NK; McCall T; Chen Y; Meyer MC
    Pharm Dev Technol; 1997 Aug; 2(3):225-32. PubMed ID: 9552450
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brain and tissue levels of mercury after chronic methylmercury exposure in the monkey.
    Rice DC
    J Toxicol Environ Health; 1989; 27(2):189-98. PubMed ID: 2499694
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.