BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 14612444)

  • 1. RNA polymerase mutation activates the production of a dormant antibiotic 3,3'-neotrehalosadiamine via an autoinduction mechanism in Bacillus subtilis.
    Inaoka T; Takahashi K; Yada H; Yoshida M; Ochi K
    J Biol Chem; 2004 Jan; 279(5):3885-92. PubMed ID: 14612444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glucose uptake pathway-specific regulation of synthesis of neotrehalosadiamine, a novel autoinducer produced in Bacillus subtilis.
    Inaoka T; Ochi K
    J Bacteriol; 2007 Jan; 189(1):65-75. PubMed ID: 17056753
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation of dormant secondary metabolism neotrehalosadiamine synthesis by an RNA polymerase mutation in Bacillus subtilis.
    Inaoka T; Ochi K
    Biosci Biotechnol Biochem; 2011; 75(4):618-23. PubMed ID: 21512256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutations in the ss subunit of the Bacillus subtilis RNA polymerase that confer both rifampicin resistance and hypersensitivity to NusG.
    Ingham CJ; Furneaux PA
    Microbiology (Reading); 2000 Dec; 146 Pt 12():3041-3049. PubMed ID: 11101662
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual control of subtilin biosynthesis and immunity in Bacillus subtilis.
    Stein T; Borchert S; Kiesau P; Heinzmann S; Klöss S; Klein C; Helfrich M; Entian KD
    Mol Microbiol; 2002 Apr; 44(2):403-16. PubMed ID: 11972779
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An operon of Bacillus subtilis motility genes transcribed by the sigma D form of RNA polymerase.
    Mirel DB; Lustre VM; Chamberlin MJ
    J Bacteriol; 1992 Jul; 174(13):4197-204. PubMed ID: 1624413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Similar organization of the sigB and spoIIA operons encoding alternate sigma factors of Bacillus subtilis RNA polymerase.
    Kalman S; Duncan ML; Thomas SM; Price CW
    J Bacteriol; 1990 Oct; 172(10):5575-85. PubMed ID: 2170324
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temporal regulation and forespore-specific expression of the spore photoproduct lyase gene by sigma-G RNA polymerase during Bacillus subtilis sporulation.
    Pedraza-Reyes M; Gutiérrez-Corona F; Nicholson WL
    J Bacteriol; 1994 Jul; 176(13):3983-91. PubMed ID: 8021181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence that the transcriptional activator Spo0A interacts with two sigma factors in Bacillus subtilis.
    Baldus JM; Buckner CM; Moran CP
    Mol Microbiol; 1995 Jul; 17(2):281-90. PubMed ID: 7494477
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Promoter recognition by sigma-37 RNA polymerase from Bacillus subtilis.
    Tatti KM; Moran CP
    J Mol Biol; 1984 May; 175(3):285-97. PubMed ID: 6202876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uncovering new metabolic capabilities of Bacillus subtilis using phenotype profiling of rifampin-resistant rpoB mutants.
    Perkins AE; Nicholson WL
    J Bacteriol; 2008 Feb; 190(3):807-14. PubMed ID: 17644585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. rpoD operon promoter used by sigma H-RNA polymerase in Bacillus subtilis.
    Carter HL; Wang LF; Doi RH; Moran CP
    J Bacteriol; 1988 Apr; 170(4):1617-21. PubMed ID: 3127379
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anaerobic growth of Bacillus subtilis alters the spectrum of spontaneous mutations in the rpoB gene leading to rifampicin resistance.
    Nicholson WL; Park R
    FEMS Microbiol Lett; 2015 Dec; 362(24):fnv213. PubMed ID: 26538577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential and cross-transcriptional control of duplicated genes encoding alternative sigma factors in Streptomyces ambofaciens.
    Roth V; Aigle B; Bunet R; Wenner T; Fourrier C; Decaris B; Leblond P
    J Bacteriol; 2004 Aug; 186(16):5355-65. PubMed ID: 15292136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel gene regulation mediated by overproduction of secondary metabolite neotrehalosadiamine in Bacillus subtilis.
    Inaoka T; Satomura T; Fujita Y; Ochi K
    FEMS Microbiol Lett; 2009 Feb; 291(2):151-6. PubMed ID: 19087206
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Environmental Dependence of Competitive Fitness in Rifampin-Resistant
    Leehan JD; Nicholson WL
    Appl Environ Microbiol; 2022 Mar; 88(5):e0242221. PubMed ID: 35258334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unveiling the molecular basis for pleiotropy in selected rif mutants of Escherichia coli: Possible role for Tyrosine in the Rif binding pocket and fast movement of RNA polymerase.
    Karthik M; Meenakshi S; Munavar MH
    Gene; 2019 Sep; 713():143951. PubMed ID: 31269464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The spoIIIA operon of Bacillus subtilis defines a new temporal class of mother-cell-specific sporulation genes under the control of the sigma E form of RNA polymerase.
    Illing N; Errington J
    Mol Microbiol; 1991 Aug; 5(8):1927-40. PubMed ID: 1766372
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring the Amino Acid Residue Requirements of the RNA Polymerase (RNAP) α Subunit C-Terminal Domain for Productive Interaction between Spx and RNAP of Bacillus subtilis.
    Birch CA; Davis MJ; Mbengi L; Zuber P
    J Bacteriol; 2017 Jul; 199(14):. PubMed ID: 28484046
    [No Abstract]   [Full Text] [Related]  

  • 20. Bacillus subtilis δ Factor Functions as a Transcriptional Regulator by Facilitating the Open Complex Formation.
    Prajapati RK; Sengupta S; Rudra P; Mukhopadhyay J
    J Biol Chem; 2016 Jan; 291(3):1064-75. PubMed ID: 26546673
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.