BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 14612444)

  • 21. Pathway of promoter melting by Bacillus subtilis RNA polymerase at a stable RNA promoter: effects of temperature, delta protein, and sigma factor mutations.
    Juang YL; Helmann JD
    Biochemistry; 1995 Jul; 34(26):8465-73. PubMed ID: 7599136
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A rifampicin resistance mutation in the rpoB gene confers ppGpp-independent antibiotic production in Streptomyces coelicolor A3(2).
    Xu J; Tozawa Y; Lai C; Hayashi H; Ochi K
    Mol Genet Genomics; 2002 Oct; 268(2):179-89. PubMed ID: 12395192
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A mutation in P23, the first gene in the RNA polymerase sigma A (sigma 43) operon, affects sporulation in Bacillus subtilis.
    Zuberi AR; Doi RH
    J Bacteriol; 1990 Apr; 172(4):2175-7. PubMed ID: 2108133
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sigma factor displacement from RNA polymerase during Bacillus subtilis sporulation.
    Ju J; Mitchell T; Peters H; Haldenwang WG
    J Bacteriol; 1999 Aug; 181(16):4969-77. PubMed ID: 10438769
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanism of initiation of transcription by Bacillus subtilis RNA polymerase at several promoters.
    Whipple FW; Sonenshein AL
    J Mol Biol; 1992 Jan; 223(2):399-414. PubMed ID: 1310745
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sequential action of two-component genetic switches regulates the PHO regulon in Bacillus subtilis.
    Hulett FM; Lee J; Shi L; Sun G; Chesnut R; Sharkova E; Duggan MF; Kapp N
    J Bacteriol; 1994 Mar; 176(5):1348-58. PubMed ID: 8113174
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of the primary sigma factor of Staphylococcus aureus.
    Deora R; Misra TK
    J Biol Chem; 1996 Sep; 271(36):21828-34. PubMed ID: 8702982
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genetic and transcriptional organization of the region encoding the beta subunit of Bacillus subtilis RNA polymerase.
    Boor KJ; Duncan ML; Price CW
    J Biol Chem; 1995 Sep; 270(35):20329-36. PubMed ID: 7657605
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Two ResD-controlled promoters regulate ctaA expression in Bacillus subtilis.
    Paul S; Zhang X; Hulett FM
    J Bacteriol; 2001 May; 183(10):3237-46. PubMed ID: 11325953
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genetic and physiological characterization of rpoB mutations that activate antibiotic production in Streptomyces lividans.
    Lai C; Xu J; Tozawa Y; Okamoto-Hosoya Y; Yao X; Ochi K
    Microbiology (Reading); 2002 Nov; 148(Pt 11):3365-3373. PubMed ID: 12427928
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Spectrum of Spontaneous Rifampin Resistance Mutations in the Bacillus subtilis
    Leehan JD; Nicholson WL
    Appl Environ Microbiol; 2021 Oct; 87(22):e0123721. PubMed ID: 34495706
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Activation of dormant bacterial genes by Nonomuraea sp. strain ATCC 39727 mutant-type RNA polymerase.
    Talà A; Wang G; Zemanova M; Okamoto S; Ochi K; Alifano P
    J Bacteriol; 2009 Feb; 191(3):805-14. PubMed ID: 19047343
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genes of the sbo-alb locus of Bacillus subtilis are required for production of the antilisterial bacteriocin subtilosin.
    Zheng G; Yan LZ; Vederas JC; Zuber P
    J Bacteriol; 1999 Dec; 181(23):7346-55. PubMed ID: 10572140
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of the sigma factor in transcription initiation in the absence of core RNA polymerase.
    Hsu HH; Chung KM; Chen TC; Chang BY
    Cell; 2006 Oct; 127(2):317-27. PubMed ID: 17055433
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of new sigma K-dependent promoters using an in vitro transcription system derived from Bacillus subtilis.
    Fujita M
    Gene; 1999 Sep; 237(1):45-52. PubMed ID: 10524235
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Autoregulation of subtilin biosynthesis in Bacillus subtilis: the role of the spa-box in subtilin-responsive promoters.
    Kleerebezem M; Bongers R; Rutten G; de Vos WM; Kuipers OP
    Peptides; 2004 Sep; 25(9):1415-24. PubMed ID: 15374645
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Osmoregulation of the opuE proline transport gene from Bacillus subtilis: contributions of the sigma A- and sigma B-dependent stress-responsive promoters.
    Spiegelhalter F; Bremer E
    Mol Microbiol; 1998 Jul; 29(1):285-96. PubMed ID: 9701821
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Autoinduction of Bacillus subtilis phoPR operon transcription results from enhanced transcription from EsigmaA- and EsigmaE-responsive promoters by phosphorylated PhoP.
    Paul S; Birkey S; Liu W; Hulett FM
    J Bacteriol; 2004 Jul; 186(13):4262-75. PubMed ID: 15205429
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An Amino Acid Substitution in RNA Polymerase That Inhibits the Utilization of an Alternative Sigma Factor.
    Wang Erickson AF; Deighan P; Garcia CP; Weinzierl ROJ; Hochschild A; Losick R
    J Bacteriol; 2017 Jul; 199(14):. PubMed ID: 28507241
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A mutation of the RNA polymerase β' subunit (rpoC) confers cephalosporin resistance in Bacillus subtilis.
    Lee YH; Nam KH; Helmann JD
    Antimicrob Agents Chemother; 2013 Jan; 57(1):56-65. PubMed ID: 23070162
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.