These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
99 related articles for article (PubMed ID: 14613222)
1. Surface-modified poly(lactide-co-glycolide) nanospheres for targeted bone imaging with enhanced labeling and delivery of radioisotope. Park YJ; Nah SH; Lee JY; Jeong JM; Chung JK; Lee MC; Yang VC; Lee SJ J Biomed Mater Res A; 2003 Dec; 67(3):751-60. PubMed ID: 14613222 [TBL] [Abstract][Full Text] [Related]
2. In vitro displacement by rat serum of adsorbed radiolabeled poloxamer and poloxamine copolymers from model and biodegradable nanospheres. Neal JC; Stolnik S; Schacht E; Kenawy ER; Garnett MC; Davis SS; Illum L J Pharm Sci; 1998 Oct; 87(10):1242-8. PubMed ID: 9758684 [TBL] [Abstract][Full Text] [Related]
3. Surface modification of poly(lactide-co-glycolide) nanospheres by biodegradable poly(lactide)-poly(ethylene glycol) copolymers. Stolnik S; Dunn SE; Garnett MC; Davies MC; Coombes AG; Taylor DC; Irving MP; Purkiss SC; Tadros TF; Davis SS Pharm Res; 1994 Dec; 11(12):1800-8. PubMed ID: 7899246 [TBL] [Abstract][Full Text] [Related]
4. Preparation of biodegradable, surface engineered PLGA nanospheres with enhanced lymphatic drainage and lymph node uptake. Hawley AE; Illum L; Davis SS Pharm Res; 1997 May; 14(5):657-61. PubMed ID: 9165539 [TBL] [Abstract][Full Text] [Related]
5. Lymph node localisation of biodegradable nanospheres surface modified with poloxamer and poloxamine block co-polymers. Hawley AE; Illum L; Davis SS FEBS Lett; 1997 Jan; 400(3):319-23. PubMed ID: 9009222 [TBL] [Abstract][Full Text] [Related]
6. Radioisotope carrying polyethylene oxide-polycaprolactone copolymer micelles for targetable bone imaging. Park YJ; Lee JY; Chang YS; Jeong JM; Chung JK; Lee MC; Park KB; Lee SJ Biomaterials; 2002 Feb; 23(3):873-9. PubMed ID: 11771706 [TBL] [Abstract][Full Text] [Related]
7. Modification of the copolymers poloxamer 407 and poloxamine 908 can affect the physical and biological properties of surface modified nanospheres. Neal JC; Stolnik S; Garnett MC; Davis SS; Illum L Pharm Res; 1998 Feb; 15(2):318-24. PubMed ID: 9523321 [TBL] [Abstract][Full Text] [Related]
8. Characterization of PLGA nanospheres stabilized with amphiphilic polymers: hydrophobically modified hydroxyethyl starch vs pluronics. Besheer A; Vogel J; Glanz D; Kressler J; Groth T; Mäder K Mol Pharm; 2009; 6(2):407-15. PubMed ID: 19718794 [TBL] [Abstract][Full Text] [Related]
9. Preparation and in vitro evaluation of surface-modified poly (lactide-co-glycolide) microparticles as biodegradable drug carriers for pulmonary peptide and protein delivery. Devrim B; Bozkır A J Microencapsul; 2014; 31(4):355-62. PubMed ID: 24697171 [TBL] [Abstract][Full Text] [Related]
10. An innovative, quick and convenient labeling method for the investigation of pharmacological behavior and the metabolism of poly(DL-lactide-co-glycolide) nanospheres. Stevanović M; Maksin T; Petković J; Filipic M; Uskoković D Nanotechnology; 2009 Aug; 20(33):335102. PubMed ID: 19636100 [TBL] [Abstract][Full Text] [Related]
11. Effects of preparation conditions on the characteristics of poly(lactide-co-glycolide) nanospheres loaded with chloro(5,10,15,20-tetraphenylporphyrinato)indium(III). da Silva AR; de Oliveira AM; Augusto F; Jorge RA J Nanosci Nanotechnol; 2011 Jun; 11(6):5234-46. PubMed ID: 21770170 [TBL] [Abstract][Full Text] [Related]
12. Andrographolide-loaded PLGA-PEG-PLGA micelles to improve its bioavailability and anticancer efficacy. Zhang J; Li Y; Gao W; Repka MA; Wang Y; Chen M Expert Opin Drug Deliv; 2014 Sep; 11(9):1367-80. PubMed ID: 24935153 [TBL] [Abstract][Full Text] [Related]
13. Cellular uptake mechanisms and intracellular distributions of polysorbate 80-modified poly (D,L-lactide-co-glycolide) nanospheres for gene delivery. Tahara K; Yamamoto H; Kawashima Y Eur J Pharm Biopharm; 2010 Jun; 75(2):218-24. PubMed ID: 20332026 [TBL] [Abstract][Full Text] [Related]
14. Poly(D,L-lactide-co-glycolide)/hydroxyapatite core-shell nanospheres. Part 1: A multifunctional system for controlled drug delivery. Vukomanović M; Skapin SD; Jančar B; Maksin T; Ignjatović N; Uskoković V; Uskoković D Colloids Surf B Biointerfaces; 2011 Feb; 82(2):404-13. PubMed ID: 20951005 [TBL] [Abstract][Full Text] [Related]
15. Effect of polymer viscosity on physicochemical properties and ocular tolerance of FB-loaded PLGA nanospheres. Araújo J; Vega E; Lopes C; Egea MA; Garcia ML; Souto EB Colloids Surf B Biointerfaces; 2009 Aug; 72(1):48-56. PubMed ID: 19403277 [TBL] [Abstract][Full Text] [Related]
16. Detection and determination of surface levels of poloxamer and PVA surfactant on biodegradable nanospheres using SSIMS and XPS. Scholes PD; Coombes AG; Illum L; Davis SS; Watts JF; Ustariz C; Vert M; Davies MC J Control Release; 1999 Jun; 59(3):261-78. PubMed ID: 10332059 [TBL] [Abstract][Full Text] [Related]
17. Surface-modified PLGA nanosphere with chitosan improved pulmonary delivery of calcitonin by mucoadhesion and opening of the intercellular tight junctions. Yamamoto H; Kuno Y; Sugimoto S; Takeuchi H; Kawashima Y J Control Release; 2005 Feb; 102(2):373-81. PubMed ID: 15653158 [TBL] [Abstract][Full Text] [Related]
18. Modulation of lymphatic distribution of subcutaneously injected poloxamer 407-coated nanospheres: the effect of the ethylene oxide chain configuration. Moghimi SM FEBS Lett; 2003 Apr; 540(1-3):241-4. PubMed ID: 12681515 [TBL] [Abstract][Full Text] [Related]
19. Synthesis and characterisation of poly(lactide-co-glycolide) nanospheres using vitamin E emulsifier prepared through one-step oil-in-water emulsion and solvent evaporation techniques. Mozafari M IET Nanobiotechnol; 2014 Dec; 8(4):257-62. PubMed ID: 25429505 [TBL] [Abstract][Full Text] [Related]