These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
351 related articles for article (PubMed ID: 14613243)
1. Influence of the in vitro culture period on the in vivo performance of cell/titanium bone tissue-engineered constructs using a rat cranial critical size defect model. Sikavitsas VI; van den Dolder J; Bancroft GN; Jansen JA; Mikos AG J Biomed Mater Res A; 2003 Dec; 67(3):944-51. PubMed ID: 14613243 [TBL] [Abstract][Full Text] [Related]
2. Pre-culture period of mesenchymal stem cells in osteogenic media influences their in vivo bone forming potential. Castano-Izquierdo H; Alvarez-Barreto J; van den Dolder J; Jansen JA; Mikos AG; Sikavitsas VI J Biomed Mater Res A; 2007 Jul; 82(1):129-38. PubMed ID: 17269144 [TBL] [Abstract][Full Text] [Related]
3. Effect of bone extracellular matrix synthesized in vitro on the osteoblastic differentiation of marrow stromal cells. Datta N; Holtorf HL; Sikavitsas VI; Jansen JA; Mikos AG Biomaterials; 2005 Mar; 26(9):971-7. PubMed ID: 15369685 [TBL] [Abstract][Full Text] [Related]
4. Flow perfusion culture of marrow stromal osteoblasts in titanium fiber mesh. van den Dolder J; Bancroft GN; Sikavitsas VI; Spauwen PH; Jansen JA; Mikos AG J Biomed Mater Res A; 2003 Feb; 64(2):235-41. PubMed ID: 12522809 [TBL] [Abstract][Full Text] [Related]
5. Scaffold mesh size affects the osteoblastic differentiation of seeded marrow stromal cells cultured in a flow perfusion bioreactor. Holtorf HL; Datta N; Jansen JA; Mikos AG J Biomed Mater Res A; 2005 Aug; 74(2):171-80. PubMed ID: 15965910 [TBL] [Abstract][Full Text] [Related]
6. Bone formation by rat bone marrow cells cultured on titanium fiber mesh: effect of in vitro culture time. van den Dolder J; Vehof JW; Spauwen PH; Jansen JA J Biomed Mater Res; 2002 Dec; 62(3):350-8. PubMed ID: 12209920 [TBL] [Abstract][Full Text] [Related]
7. Analysis of the osteoinductive capacity and angiogenicity of an in vitro generated extracellular matrix. Pham QP; Kasper FK; Mistry AS; Sharma U; Yasko AW; Jansen JA; Mikos AG J Biomed Mater Res A; 2009 Feb; 88(2):295-303. PubMed ID: 18286641 [TBL] [Abstract][Full Text] [Related]
8. Effects of Runx2 genetic engineering and in vitro maturation of tissue-engineered constructs on the repair of critical size bone defects. Byers BA; Guldberg RE; Hutmacher DW; García AJ J Biomed Mater Res A; 2006 Mar; 76(3):646-55. PubMed ID: 16287095 [TBL] [Abstract][Full Text] [Related]
9. Bone tissue induction, using a COLLOSS-filled titanium fibre mesh-scaffolding material. Walboomers XF; Jansen JA Biomaterials; 2005 Aug; 26(23):4779-85. PubMed ID: 15763257 [TBL] [Abstract][Full Text] [Related]
10. Flow perfusion culture induces the osteoblastic differentiation of marrow stroma cell-scaffold constructs in the absence of dexamethasone. Holtorf HL; Jansen JA; Mikos AG J Biomed Mater Res A; 2005 Mar; 72(3):326-34. PubMed ID: 15657936 [TBL] [Abstract][Full Text] [Related]
11. [A study on the repair of bone defects with deproteinized bone surrounded by titanium mesh and osteoblasts]. Zhang Q; Zhao S; Chen W; Huang J; Chu C; Pu Y Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Apr; 22(2):254-7. PubMed ID: 15884530 [TBL] [Abstract][Full Text] [Related]
12. Segmental bone tissue engineering by seeding osteoblast precursor cells into titanium mesh-coral composite scaffolds. Chen F; Feng X; Wu W; Ouyang H; Gao Z; Cheng X; Hou R; Mao T Int J Oral Maxillofac Surg; 2007 Sep; 36(9):822-7. PubMed ID: 17804199 [TBL] [Abstract][Full Text] [Related]
13. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells. Oliveira JM; Rodrigues MT; Silva SS; Malafaya PB; Gomes ME; Viegas CA; Dias IR; Azevedo JT; Mano JF; Reis RL Biomaterials; 2006 Dec; 27(36):6123-37. PubMed ID: 16945410 [TBL] [Abstract][Full Text] [Related]
14. Flow perfusion culture of marrow stromal cells seeded on porous biphasic calcium phosphate ceramics. Holtorf HL; Sheffield TL; Ambrose CG; Jansen JA; Mikos AG Ann Biomed Eng; 2005 Sep; 33(9):1238-48. PubMed ID: 16133930 [TBL] [Abstract][Full Text] [Related]
15. Formation of three-dimensional cell/polymer constructs for bone tissue engineering in a spinner flask and a rotating wall vessel bioreactor. Sikavitsas VI; Bancroft GN; Mikos AG J Biomed Mater Res; 2002 Oct; 62(1):136-48. PubMed ID: 12124795 [TBL] [Abstract][Full Text] [Related]
16. Ectopic bone formation in rats: the importance of the carrier. Hartman EH; Vehof JW; Spauwen PH; Jansen JA Biomaterials; 2005 May; 26(14):1829-35. PubMed ID: 15576157 [TBL] [Abstract][Full Text] [Related]
17. Repair of calvarial defects with customized tissue-engineered bone grafts I. Evaluation of osteogenesis in a three-dimensional culture system. Schantz JT; Teoh SH; Lim TC; Endres M; Lam CX; Hutmacher DW Tissue Eng; 2003; 9 Suppl 1():S113-26. PubMed ID: 14511475 [TBL] [Abstract][Full Text] [Related]
18. Experimental study on reconstruction of segmental mandible defects using tissue engineered bone combined bone marrow stromal cells with three-dimensional tricalcium phosphate. He Y; Zhang ZY; Zhu HG; Qiu W; Jiang X; Guo W J Craniofac Surg; 2007 Jul; 18(4):800-5. PubMed ID: 17667668 [TBL] [Abstract][Full Text] [Related]
19. Analysis of ectopic and orthotopic bone formation in cell-based tissue-engineered constructs in goats. Kruyt MC; Dhert WJ; Oner FC; van Blitterswijk CA; Verbout AJ; de Bruijn JD Biomaterials; 2007 Apr; 28(10):1798-805. PubMed ID: 17182096 [TBL] [Abstract][Full Text] [Related]
20. Bone formation in trabecular bone cell seeded scaffolds used for reconstruction of the rat mandible. Schliephake H; Zghoul N; Jäger V; van Griensven M; Zeichen J; Gelinsky M; Szubtarsky N Int J Oral Maxillofac Surg; 2009 Feb; 38(2):166-72. PubMed ID: 19121923 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]