These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 14613708)

  • 1. Re-emission of heavy water vapour from soil to the atmosphere.
    Yokoyama S; Noguchi H; Ichimasa Y; Ichimasa M
    J Environ Radioact; 2004; 71(3):201-13. PubMed ID: 14613708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modelling of the long-term fate of pesticide residues in agricultural soils and their surface exchange with the atmosphere: Part II. Projected long-term fate of pesticide residues.
    Scholtz MT; Bidleman TF
    Sci Total Environ; 2007 May; 377(1):61-80. PubMed ID: 17346778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and validation of a dynamical atmosphere-vegetation-soil HTO transport and OBT formation model.
    Ota M; Nagai H
    J Environ Radioact; 2011 Sep; 102(9):813-23. PubMed ID: 21665337
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deposition of tritiated water vapour to water surface in an outdoor field.
    Noguchi H; Fukutani S; Yokoyama S; Kinouchi N
    Radiat Prot Dosimetry; 2001; 93(2):167-72. PubMed ID: 11548340
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fate of HTO following its acute soil deposition at different growth stages of Chinese cabbage.
    Choi YH; Kang HS; Jun I; Keum DK; Lee H; Kim SB; Lee CW
    J Environ Radioact; 2007; 97(1):20-9. PubMed ID: 17418920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modelling tritium flux from water to atmosphere: application to the Loire River.
    Marang L; Siclet F; Luck M; Maro D; Tenailleau L; Jean-Baptiste P; Fourré E; Fontugne M
    J Environ Radioact; 2011 Mar; 102(3):244-51. PubMed ID: 21255883
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modelling of the long term fate of pesticide residues in agricultural soils and their surface exchange with the atmosphere: Part I. Model description and evaluation.
    Scholtz MT; Bidleman TF
    Sci Total Environ; 2006 Sep; 368(2-3):823-38. PubMed ID: 16678241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tritium dynamics in soils and plants grown under three irrigation regimes at a tritium processing facility in Canada.
    Mihok S; Wilk M; Lapp A; St-Amant N; Kwamena NA; Clark ID
    J Environ Radioact; 2016 Mar; 153():176-187. PubMed ID: 26773512
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An attempt for modeling the atmospheric transport of 3H around Kakrapar Atomic Power Station.
    Patra AK; Nankar DP; Joshi CP; Venkataraman S; Sundar D; Hegde AG
    Radiat Prot Dosimetry; 2008; 130(3):351-7. PubMed ID: 18664562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tritium profiles in snowpacks.
    Galeriu D; Davis P; Workman W
    J Environ Radioact; 2010 Oct; 101(10):869-74. PubMed ID: 20557986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of tritiated water diffusion through the Toarcian clayey formation of the Tournemire experimental site (France).
    Motellier S; Devol-Brown I; Savoye S; Thoby D; Alberto JC
    J Contam Hydrol; 2007 Oct; 94(1-2):99-108. PubMed ID: 17688970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A simplified 137Cs transport model for estimating erosion rates in undisturbed soil.
    Zhang X; Long Y; He X; Fu J; Zhang Y
    J Environ Radioact; 2008 Aug; 99(8):1242-6. PubMed ID: 18433951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Importance of root HTO uptake in controlling land-surface tritium dynamics after an-acute HT deposition: a numerical experiment.
    Ota M; Nagai H; Koarashi J
    J Environ Radioact; 2012 Jul; 109():94-102. PubMed ID: 22390945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidation and dispersion of HT in the environment: the August 1986 field experiment at Chalk River.
    Brown RM; Ogram GL; Spencer FS
    Health Phys; 1990 Feb; 58(2):171-81. PubMed ID: 2298573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vertical profile of tritium concentration in air during a chronic atmospheric HT release.
    Noguchi H; Yokoyama S
    Health Phys; 2003 Mar; 84(3):344-53. PubMed ID: 12645769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Soil redistribution model for undisturbed and cultivated sites based on Chernobyl-derived cesium-137 fallout.
    Hrachowitz M; Maringer FJ; Steineder C; Gerzabek MH
    J Environ Qual; 2005; 34(4):1302-10. PubMed ID: 15998852
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distribution of tritium in water vapour and precipitation around Wolsung nuclear power plant.
    Chae JS; Lee SK; Kim Y; Lee JM; Cho HJ; Cho YW; Yun JY
    Radiat Prot Dosimetry; 2011 Jul; 146(1-3):330-3. PubMed ID: 21515611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental and theoretical study of radon distribution in soil.
    Antonopoulos-Domis M; Xanthos S; Clouvas A; Alifrangis D
    Health Phys; 2009 Oct; 97(4):322-31. PubMed ID: 19741361
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The distribution of tritium in the terrestrial and aquatic environments of the Creys-Malville nuclear power plant (2002-2005).
    Jean-Baptiste P; Baumier D; Fourré E; Dapoigny A; Clavel B
    J Environ Radioact; 2007; 94(2):107-18. PubMed ID: 17376566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radioactivity concentrations and dose assessment for soil samples around nuclear power plant IV in Taiwan.
    Tsai TL; Lin CC; Wang TW; Chu TC
    J Radiol Prot; 2008 Sep; 28(3):347-60. PubMed ID: 18714131
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.