BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 14613800)

  • 1. A potential role for water in the modulation of oxygen-binding by tarantula hemocyanin.
    Hellmann N; Raithel K; Decker H
    Comp Biochem Physiol A Mol Integr Physiol; 2003 Nov; 136(3):725-34. PubMed ID: 14613800
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nested allostery in scorpion hemocyanin (Pandinus imperator).
    Decker H
    Biophys Chem; 1990 Aug; 37(1-3):257-63. PubMed ID: 2285787
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Allosteric oxygen-binding properties of reassembled tarantula (Eurypelma californicum) hemocyanin with incorporated apo- or met-subunits.
    Decker H; Savel-Niemann A; Körschenhausen D; Eckerskorn E; Markl J
    Biol Chem Hoppe Seyler; 1989 Jun; 370(6):511-23. PubMed ID: 2673295
    [TBL] [Abstract][Full Text] [Related]  

  • 4. All hierarchical levels are involved in conformational transitions of the 4 x 6-meric tarantula hemocyanin upon oxygenation.
    Hartmann H; Decker H
    Biochim Biophys Acta; 2002 Dec; 1601(2):132-7. PubMed ID: 12445474
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inversion of the Bohr effect upon oxygen binding to 24-meric tarantula hemocyanin.
    Sterner R; Decker H
    Proc Natl Acad Sci U S A; 1994 May; 91(11):4835-9. PubMed ID: 8197143
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nested allostery of arthropodan hemocyanin (Eurypelma californicum and Homarus americanus). The role of protons.
    Decker H; Sterner R
    J Mol Biol; 1990 Jan; 211(1):281-93. PubMed ID: 2153835
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bohr-effect and buffering capacity of hemocyanin from the tarantula E. californicum.
    Hellmann N
    Biophys Chem; 2004 Apr; 109(1):157-67. PubMed ID: 15059668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cooperative transition in the conformation of 24-mer tarantula hemocyanin upon oxygen binding.
    Erker W; Beister U; Decker H
    J Biol Chem; 2005 Apr; 280(13):12391-6. PubMed ID: 15695808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extreme thermostability of tarantula hemocyanin.
    Sterner R; Vogl T; Hinz HJ; Penz F; Hoff R; Föll R; Decker H
    FEBS Lett; 1995 May; 364(1):9-12. PubMed ID: 7750550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tris: an allosteric effector of tarantula haemocyanin.
    Sterner R; Bardehle K; Paul R; Decker H
    FEBS Lett; 1994 Feb; 339(1-2):37-9. PubMed ID: 8313977
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hemocyanins in spiders. XXII. Range of allosteric interaction in a four-hexamer hemocyanin. Co-operativity and Bohr effect in dissociation intermediates.
    Savel-Niemann A; Markl J; Linzen B
    J Mol Biol; 1988 Nov; 204(2):385-95. PubMed ID: 3221391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Allostery in Callinectes sapidus hemocyanin: cooperative oxygen binding and interactions with L-lactate, calcium, and protons.
    Johnson BA; Bonaventura C; Bonaventura J
    Biochemistry; 1988 Mar; 27(6):1995-2001. PubMed ID: 2837279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Small-angle X-ray scattering reveals differences between the quaternary structures of oxygenated and deoxygenated tarantula hemocyanin.
    Decker H; Hartmann H; Sterner R; Schwarz E; Pilz I
    FEBS Lett; 1996 Sep; 393(2-3):226-30. PubMed ID: 8814295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic properties of catecholoxidase activity of tarantula hemocyanin.
    Jaenicke E; Decker H
    FEBS J; 2008 Apr; 275(7):1518-1528. PubMed ID: 18279382
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nested allosteric interaction in tarantula hemocyanin revealed through the binding of oxygen and carbon monoxide.
    Decker H; Connelly PR; Robert CH; Gill SJ
    Biochemistry; 1988 Sep; 27(18):6901-8. PubMed ID: 3196690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spider hemocyanin binds ecdysone and 20-OH-ecdysone.
    Jaenicke E; Föll R; Decker H
    J Biol Chem; 1999 Nov; 274(48):34267-71. PubMed ID: 10567401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hemocyanins in spiders, XIII. Kinetics of oxygen dissociation from individual subunits of Eurypelma and Cupiennius hemocyanin.
    Markl J; Bonaventura C; Bonaventura J
    Hoppe Seylers Z Physiol Chem; 1981 Apr; 362(4):429-37. PubMed ID: 7239442
    [No Abstract]   [Full Text] [Related]  

  • 18. Hemocyanins in spiders, XVII. A presumptive active-site sequence of arthropod hemocyanins.
    Schneider HJ; Illig U; Müller E; Linzen B; Lottspeich F; Henschen A
    Hoppe Seylers Z Physiol Chem; 1982 May; 363(5):487-92. PubMed ID: 7095755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hemocyanins in spiders, IX. Homogeneity, subunit composition and the basic oligomeric structure of Eurypelma californicum hemocyanin.
    Markl J; Savel A; Decker H; Linzen B
    Hoppe Seylers Z Physiol Chem; 1980 May; 361(5):649-60. PubMed ID: 7429421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hemocyanins in spiders, VIII. Oxygen affinity of the individual subunits isolated from Eurypelma californicum hemocyanin.
    Decker H; Markl J; Loewe R; Linzen B
    Hoppe Seylers Z Physiol Chem; 1979 Oct; 360(10):1505-7. PubMed ID: 40862
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.