BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 14613914)

  • 1. Interaction of myeloperoxidase with vascular NAD(P)H oxidase-derived reactive oxygen species in vasculature: implications for vascular diseases.
    Zhang C; Yang J; Jacobs JD; Jennings LK
    Am J Physiol Heart Circ Physiol; 2003 Dec; 285(6):H2563-72. PubMed ID: 14613914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Myeloperoxidase amplified high glucose-induced endothelial dysfunction in vasculature: Role of NADPH oxidase and hypochlorous acid.
    Tian R; Ding Y; Peng YY; Lu N
    Biochem Biophys Res Commun; 2017 Mar; 484(3):572-578. PubMed ID: 28131839
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Leukocyte-derived myeloperoxidase amplifies high-glucose--induced endothelial dysfunction through interaction with high-glucose--stimulated, vascular non--leukocyte-derived reactive oxygen species.
    Zhang C; Yang J; Jennings LK
    Diabetes; 2004 Nov; 53(11):2950-9. PubMed ID: 15504976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quercetin Attenuated Myeloperoxidase-Dependent HOCl Generation and Endothelial Dysfunction in Diabetic Vasculature.
    Tian R; Jin Z; Zhou L; Zeng XP; Lu N
    J Agric Food Chem; 2021 Jan; 69(1):404-413. PubMed ID: 33395297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immunohistochemical evidence for the myeloperoxidase/H2O2/halide system in human atherosclerotic lesions: colocalization of myeloperoxidase and hypochlorite-modified proteins.
    Malle E; Waeg G; Schreiber R; Gröne EF; Sattler W; Gröne HJ
    Eur J Biochem; 2000 Jul; 267(14):4495-503. PubMed ID: 10880973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quercetin Attenuates Vascular Endothelial Dysfunction in Atherosclerotic Mice by Inhibiting Myeloperoxidase and NADPH Oxidase Function.
    Li JX; Tian R; Lu N
    Chem Res Toxicol; 2023 Feb; 36(2):260-269. PubMed ID: 36719041
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hypochlorite-modified high-density lipoprotein acts as a sink for myeloperoxidase in vitro.
    Marsche G; Furtmüller PG; Obinger C; Sattler W; Malle E
    Cardiovasc Res; 2008 Jul; 79(1):187-94. PubMed ID: 18296711
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of VPO1, a newly identified heme-containing peroxidase, in ox-LDL induced endothelial cell apoptosis.
    Bai YP; Hu CP; Yuan Q; Peng J; Shi RZ; Yang TL; Cao ZH; Li YJ; Cheng G; Zhang GG
    Free Radic Biol Med; 2011 Oct; 51(8):1492-500. PubMed ID: 21820048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reactive oxygen species as mediators of angiogenesis signaling: role of NAD(P)H oxidase.
    Ushio-Fukai M; Alexander RW
    Mol Cell Biochem; 2004 Sep; 264(1-2):85-97. PubMed ID: 15544038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uncoupling of endothelial nitric oxidase synthase by hypochlorous acid: role of NAD(P)H oxidase-derived superoxide and peroxynitrite.
    Xu J; Xie Z; Reece R; Pimental D; Zou MH
    Arterioscler Thromb Vasc Biol; 2006 Dec; 26(12):2688-95. PubMed ID: 17023679
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular chlorine generated by the myeloperoxidase-hydrogen peroxide-chloride system of phagocytes converts low density lipoprotein cholesterol into a family of chlorinated sterols.
    Hazen SL; Hsu FF; Duffin K; Heinecke JW
    J Biol Chem; 1996 Sep; 271(38):23080-8. PubMed ID: 8798498
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Myeloperoxidase-derived hypochlorous acid promotes ox-LDL-induced senescence of endothelial cells through a mechanism involving β-catenin signaling in hyperlipidemia.
    Liu WQ; Zhang YZ; Wu Y; Zhang JJ; Li TB; Jiang T; Xiong XM; Luo XJ; Ma QL; Peng J
    Biochem Biophys Res Commun; 2015 Nov; 467(4):859-65. PubMed ID: 26474698
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GYY4137, a hydrogen sulfide donor, protects against endothelial dysfunction in porcine coronary arteries exposed to myeloperoxidase and hypochlorous acid.
    Harper A; Chapel M; Hodgson G; Malinowski K; Yates I; Garle M; Ralevic V
    Vascul Pharmacol; 2023 Oct; 152():107199. PubMed ID: 37500030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of Myeloperoxidase- and Neutrophil-Mediated Hypochlorous Acid Formation in Vitro and Endothelial Cell Injury by (-)-Epigallocatechin Gallate.
    Tian R; Ding Y; Peng YY; Lu N
    J Agric Food Chem; 2017 Apr; 65(15):3198-3203. PubMed ID: 28361543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human low density lipoprotein as a target of hypochlorite generated by myeloperoxidase.
    Jerlich A; Fabjan JS; Tschabuschnig S; Smirnova AV; Horakova L; Hayn M; Auer H; Guttenberger H; Leis HJ; Tatzber F; Waeg G; Schaur RJ
    Free Radic Biol Med; 1998 May; 24(7-8):1139-48. PubMed ID: 9626568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Melatonin prevents myeloperoxidase heme destruction and the generation of free iron mediated by self-generated hypochlorous acid.
    Shaeib F; Khan SN; Ali I; Najafi T; Maitra D; Abdulhamid I; Saed GM; Pennathur S; Abu-Soud HM
    PLoS One; 2015; 10(3):e0120737. PubMed ID: 25835505
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of vascular peroxidase 1 in ox-LDL-induced vascular smooth muscle cell calcification.
    Tang Y; Xu Q; Peng H; Liu Z; Yang T; Yu Z; Cheng G; Li X; Zhang G; Shi R
    Atherosclerosis; 2015 Dec; 243(2):357-63. PubMed ID: 26520887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Myeloperoxidase and horseradish peroxidase catalyze tyrosine nitration in proteins from nitrite and hydrogen peroxide.
    Sampson JB; Ye Y; Rosen H; Beckman JS
    Arch Biochem Biophys; 1998 Aug; 356(2):207-13. PubMed ID: 9705211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The free amino acid tyrosine enhances the chlorinating activity of human myeloperoxidase.
    Vlasova II; Sokolov AV; Arnhold J
    J Inorg Biochem; 2012 Jan; 106(1):76-83. PubMed ID: 22112843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms by which clofazimine and dapsone inhibit the myeloperoxidase system. A possible correlation with their anti-inflammatory properties.
    van Zyl JM; Basson K; Kriegler A; van der Walt BJ
    Biochem Pharmacol; 1991 Jul; 42(3):599-608. PubMed ID: 1650217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.