BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

691 related articles for article (PubMed ID: 14613962)

  • 1. Poly (DL-lactide-co-glycolide) nanoparticle-based inhalable sustained drug delivery system for experimental tuberculosis.
    Pandey R; Sharma A; Zahoor A; Sharma S; Khuller GK; Prasad B
    J Antimicrob Chemother; 2003 Dec; 52(6):981-6. PubMed ID: 14613962
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subcutaneous nanoparticle-based antitubercular chemotherapy in an experimental model.
    Pandey R; Khuller GK
    J Antimicrob Chemother; 2004 Jul; 54(1):266-8. PubMed ID: 15128731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemotherapeutic efficacy of poly (DL-lactide-co-glycolide) nanoparticle encapsulated antitubercular drugs at sub-therapeutic dose against experimental tuberculosis.
    Sharma A; Pandey R; Sharma S; Khuller GK
    Int J Antimicrob Agents; 2004 Dec; 24(6):599-604. PubMed ID: 15555884
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solid lipid particle-based inhalable sustained drug delivery system against experimental tuberculosis.
    Pandey R; Khuller GK
    Tuberculosis (Edinb); 2005 Jul; 85(4):227-34. PubMed ID: 15922668
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemotherapeutic potential of orally administered poly(lactide-co-glycolide) microparticles containing isoniazid, rifampin, and pyrazinamide against experimental tuberculosis.
    Ul-Ain Q; Sharma S; Khuller GK
    Antimicrob Agents Chemother; 2003 Sep; 47(9):3005-7. PubMed ID: 12937014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lectin-functionalized poly (lactide-co-glycolide) nanoparticles as oral/aerosolized antitubercular drug carriers for treatment of tuberculosis.
    Sharma A; Sharma S; Khuller GK
    J Antimicrob Chemother; 2004 Oct; 54(4):761-6. PubMed ID: 15329364
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Therapeutic efficacy of Poly(DL-lactide-Co-Glycolide)-encapsulated antitubercular drugs against Mycobacterium tuberculosis infection induced in mice.
    Dutt M; Khuller GK
    Antimicrob Agents Chemother; 2001 Jan; 45(1):363-6. PubMed ID: 11121000
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemotherapeutic efficacy of nanoparticle encapsulated antitubercular drugs.
    Pandey R; Sharma S; Khuller GK
    Drug Deliv; 2006; 13(4):287-94. PubMed ID: 16766470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhalable alginate nanoparticles as antitubercular drug carriers against experimental tuberculosis.
    Ahmad Z; Sharma S; Khuller GK
    Int J Antimicrob Agents; 2005 Oct; 26(4):298-303. PubMed ID: 16154726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoparticle encapsulated antitubercular drugs as a potential oral drug delivery system against murine tuberculosis.
    Pandey R; Zahoor A; Sharma S; Khuller GK
    Tuberculosis (Edinb); 2003; 83(6):373-8. PubMed ID: 14623168
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alginate-based oral drug delivery system for tuberculosis: pharmacokinetics and therapeutic effects.
    Qurrat-ul-Ain ; Sharma S; Khuller GK; Garg SK
    J Antimicrob Chemother; 2003 Apr; 51(4):931-8. PubMed ID: 12654730
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Respirable PLGA microspheres containing rifampicin for the treatment of tuberculosis: screening in an infectious disease model.
    Suarez S; O'Hara P; Kazantseva M; Newcomer CE; Hopfer R; McMurray DN; Hickey AJ
    Pharm Res; 2001 Sep; 18(9):1315-9. PubMed ID: 11683246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemotherapy of Mycobacterium tuberculosis infections in mice with a combination of isoniazid and rifampicin entrapped in Poly (DL-lactide-co-glycolide) microparticles.
    Dutt M; Khuller GK
    J Antimicrob Chemother; 2001 Jun; 47(6):829-35. PubMed ID: 11389115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oral solid lipid nanoparticle-based antitubercular chemotherapy.
    Pandey R; Sharma S; Khuller GK
    Tuberculosis (Edinb); 2005; 85(5-6):415-20. PubMed ID: 16256437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of poly [DL-lactide-co-glycolide] in development of a sustained oral delivery system for antitubercular drug(s).
    Ain Q; Sharma S; Garg SK; Khuller GK
    Int J Pharm; 2002 Jun; 239(1-2):37-46. PubMed ID: 12052689
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemotherapeutic potential of alginate-chitosan microspheres as anti-tubercular drug carriers.
    Pandey R; Khuller GK
    J Antimicrob Chemother; 2004 Apr; 53(4):635-40. PubMed ID: 14998985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel chemotherapy for tuberculosis: chemotherapeutic potential of econazole- and moxifloxacin-loaded PLG nanoparticles.
    Ahmad Z; Pandey R; Sharma S; Khuller GK
    Int J Antimicrob Agents; 2008 Feb; 31(2):142-6. PubMed ID: 18155883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oral nanoparticle-based antituberculosis drug delivery to the brain in an experimental model.
    Pandey R; Khuller GK
    J Antimicrob Chemother; 2006 Jun; 57(6):1146-52. PubMed ID: 16597631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lung specific stealth liposomes as antitubercular drug carriers in guinea pigs.
    Pandey R; Sharma S; Khuller GK
    Indian J Exp Biol; 2004 Jun; 42(6):562-6. PubMed ID: 15260105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spray-dried particles as pulmonary delivery system of anti-tubercular drugs: design, optimization, in vitro and in vivo evaluation.
    Garg T; Goyal AK; Rath G; Murthy RS
    Pharm Dev Technol; 2016 Dec; 21(8):951-960. PubMed ID: 26334961
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 35.