BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 14614153)

  • 1. Role of calcium sensitivity modulation in skeletal muscle performance.
    MacIntosh BR
    News Physiol Sci; 2003 Dec; 18():222-5. PubMed ID: 14614153
    [TBL] [Abstract][Full Text] [Related]  

  • 2. X-ray diffraction evidence for the extensibility of actin and myosin filaments during muscle contraction.
    Wakabayashi K; Sugimoto Y; Tanaka H; Ueno Y; Takezawa Y; Amemiya Y
    Biophys J; 1994 Dec; 67(6):2422-35. PubMed ID: 7779179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellular and whole muscle studies of activity dependent potentiation.
    MacIntosh BR
    Adv Exp Med Biol; 2010; 682():315-42. PubMed ID: 20824534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformational changes of contractile proteins accompanying modulation of skeletal muscle contraction. Polarized microfluorometry investigations.
    Borovikov YuS ; Kakol I
    Gen Physiol Biophys; 1991 Jun; 10(3):245-64. PubMed ID: 1916220
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of Skeletal Muscle Contraction by Myosin Phosphorylation.
    Vandenboom R
    Compr Physiol; 2016 Dec; 7(1):171-212. PubMed ID: 28135003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Myosin light chain phosphorylation affects the structure of rabbit skeletal muscle thick filaments.
    Levine RJ; Kensler RW; Yang Z; Stull JT; Sweeney HL
    Biophys J; 1996 Aug; 71(2):898-907. PubMed ID: 8842229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of contraction in striated muscle.
    Gordon AM; Homsher E; Regnier M
    Physiol Rev; 2000 Apr; 80(2):853-924. PubMed ID: 10747208
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Correlation between Ca2+-dependent movement of crosslinks in myosin filaments and Ca2+-sensitive actin-activated ATPase of skeletal muscle myosin].
    Podlubnaia ZA; Malyshev SL; Lukoianova NA; Vishnevskaia ZI; Udal'tspv SM; Stepkovskiĭ D; Konkol' I
    Biofizika; 1996; 41(1):58-63. PubMed ID: 8714459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tilting of the light-chain region of myosin during step length changes and active force generation in skeletal muscle.
    Irving M; St Claire Allen T; Sabido-David C; Craik JS; Brandmeier B; Kendrick-Jones J; Corrie JE; Trentham DR; Goldman YE
    Nature; 1995 Jun; 375(6533):688-91. PubMed ID: 7791902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in myofibrillar structure and function produced by N-terminal deletion of the regulatory light chain in Drosophila.
    Irving T; Bhattacharya S; Tesic I; Moore J; Farman G; Simcox A; Vigoreaux J; Maughan D
    J Muscle Res Cell Motil; 2001; 22(8):675-83. PubMed ID: 12222828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphorylation of the regulatory light chains of myosin affects Ca2+ sensitivity of skeletal muscle contraction.
    Szczesna D; Zhao J; Jones M; Zhi G; Stull J; Potter JD
    J Appl Physiol (1985); 2002 Apr; 92(4):1661-70. PubMed ID: 11896035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulatory light chains modulate in vitro actin motility driven by skeletal heavy meromyosin.
    Vikhoreva NN; Månsson A
    Biochem Biophys Res Commun; 2010 Dec; 403(1):1-6. PubMed ID: 20946876
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Length-dependent Ca(2+) activation in cardiac muscle: some remaining questions.
    Fuchs F; Martyn DA
    J Muscle Res Cell Motil; 2005; 26(4-5):199-212. PubMed ID: 16205841
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of Limulus skeletal muscle contraction.
    Ritter O; Haase H; Morano I
    FEBS Lett; 1999 Mar; 446(2-3):233-5. PubMed ID: 10100847
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of actin conformation and inhibition of actin filament velocity by calponin.
    Borovikov YuS ; Horiuchi KY; Avrova SV; Chacko S
    Biochemistry; 1996 Oct; 35(43):13849-57. PubMed ID: 8901528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. There is no slowing of motility speed with increased body size in rat, human, horse and rhinoceros independent on temperature and skeletal muscle myosin isoform.
    Li M; Li M; Marx JO; Larsson L
    Acta Physiol (Oxf); 2011 Aug; 202(4):671-81. PubMed ID: 21554558
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calcium, cross-bridges, and the Frank-Starling relationship.
    Fuchs F; Smith SH
    News Physiol Sci; 2001 Feb; 16():5-10. PubMed ID: 11390938
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electron Microscopic Recording of the Power and Recovery Strokes of Individual Myosin Heads Coupled with ATP Hydrolysis: Facts and Implications.
    Sugi H; Chaen S; Akimoto T
    Int J Mol Sci; 2018 May; 19(5):. PubMed ID: 29734671
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Osmotic compression of skinned cardiac and skeletal muscle bundles: effects on force generation, Ca2+ sensitivity and Ca2+ binding.
    Wang YP; Fuchs F
    J Mol Cell Cardiol; 1995 Jun; 27(6):1235-44. PubMed ID: 8531205
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Myosin light chain kinase and myosin phosphorylation effect frequency-dependent potentiation of skeletal muscle contraction.
    Zhi G; Ryder JW; Huang J; Ding P; Chen Y; Zhao Y; Kamm KE; Stull JT
    Proc Natl Acad Sci U S A; 2005 Nov; 102(48):17519-24. PubMed ID: 16299103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.