These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 14614935)

  • 1. An improved method of computing the wear factor for total hip prostheses involving the variation of relative motion and contact pressure with location on the bearing surface.
    Saikko V; Calonius O
    J Biomech; 2003 Dec; 36(12):1819-27. PubMed ID: 14614935
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Force track analysis of contemporary hip simulators.
    Calonius O; Saikko V
    J Biomech; 2003 Nov; 36(11):1719-26. PubMed ID: 14522214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A finite element method comparison of wear in two metal-on-metal total hip prostheses.
    Cosmi F; Hoglievina M; Fancellu G; Martinelli B
    Proc Inst Mech Eng H; 2006 Nov; 220(8):871-9. PubMed ID: 17236520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wear simulation of ultra-high molecular weight polyethylene hip implants by incorporating the effects of cross-shear and contact pressure.
    Kang L; Galvin AL; Brown TD; Fisher J; Jin ZM
    Proc Inst Mech Eng H; 2008 Oct; 222(7):1049-64. PubMed ID: 19024153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Local head roughening as a factor contributing to variability of total hip wear: a finite element analysis.
    Brown TD; Stewart KJ; Nieman JC; Pedersen DR; Callaghan JJ
    J Biomech Eng; 2002 Dec; 124(6):691-8. PubMed ID: 12596637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A simple fully integrated contact-coupled wear prediction for ultra-high molecular weight polyethylene hip implants.
    Kang L; Galvin AL; Jin ZM; Fisher J
    Proc Inst Mech Eng H; 2006 Jan; 220(1):33-46. PubMed ID: 16459444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of head size on wear properties of metal-on-metal bearings of hip prostheses, and comparison with wear properties of metal-on-polyethylene bearings using hip simulator.
    Okazaki Y
    J Mech Behav Biomed Mater; 2014 Mar; 31():152-63. PubMed ID: 24290355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of scratch resistance of cobalt chromium alloy bearing surface, articulating against ultra-high molecular weight polyethylene, due to third-body wear particles.
    Mirghany M; Jin ZM
    Proc Inst Mech Eng H; 2004; 218(1):41-50. PubMed ID: 14982345
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature prediction in a finite element model for sliding contact analysis of total hip prosthesis.
    Suhendra N; Stachowiak GW
    Proc Inst Mech Eng H; 2004; 218(5):361-70. PubMed ID: 15533001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in the contact area during the bedding-in wear of different sizes of metal on metal hip prostheses.
    Hu XQ; Isaac GH; Fisher J
    Biomed Mater Eng; 2004; 14(2):145-9. PubMed ID: 15156105
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of contact mechanics in McKee-farrar metal-on-metal hip implants.
    Yew A; Jagatia M; Ensaff H; Jin ZM
    Proc Inst Mech Eng H; 2003; 217(5):333-40. PubMed ID: 14558645
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tribological behavior of artificial hip joint under the effects of magnetic field in dry and lubricated sliding.
    Zaki M; Aljinaidi A; Hamed M
    Biomed Mater Eng; 2003; 13(3):205-21. PubMed ID: 12883170
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Slide track analysis of eight contemporary hip simulator designs.
    Calonius O; Saikko V
    J Biomech; 2002 Nov; 35(11):1439-50. PubMed ID: 12413963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contact mechanics of metal-on-metal hip implants employing a metallic cup with a UHMWPE backing.
    Liu F; Jin ZM; Grigoris P; Hirt F; Rieker C
    Proc Inst Mech Eng H; 2003; 217(3):207-13. PubMed ID: 12807161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational hip joint simulator for wear and heat generation.
    Fialho JC; Fernandes PR; Eça L; Folgado J
    J Biomech; 2007; 40(11):2358-66. PubMed ID: 17270192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of extent of motion and type of load on the wear of polyethylene in a biaxial hip simulator.
    Saikko V; Calonius O; Keränen J
    J Biomed Mater Res B Appl Biomater; 2003 Apr; 65(1):186-92. PubMed ID: 12632389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contact mechanics analysis of metal-on-metal hip resurfacing prostheses.
    Udofia IJ; Yew A; Jin ZM
    Proc Inst Mech Eng H; 2004; 218(5):293-305. PubMed ID: 15532995
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polyethylene wear and acetabular component orientation.
    Patil S; Bergula A; Chen PC; Colwell CW; D'Lima DD
    J Bone Joint Surg Am; 2003; 85-A Suppl 4():56-63. PubMed ID: 14652394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contact mechanics studies of an ellipsoidal contact bearing surface of metal-on-metal hip prostheses under micro-lateralization.
    Wang L; Liu X; Li D; Liu F; Jin Z
    Med Eng Phys; 2014 Apr; 36(4):419-24. PubMed ID: 24461516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Loss in mechanical contact of cementless acetabular prostheses due to post-operative weight bearing: a biomechanical model.
    Bellini CM; Galbusera F; Ceroni RG; Raimondi MT
    Med Eng Phys; 2007 Mar; 29(2):175-81. PubMed ID: 16569508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.