These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 14614937)

  • 1. Reconstructed bone end loads on the canine forelimb during gait.
    Coleman JC; Hart RT; Burr DB
    J Biomech; 2003 Dec; 36(12):1837-44. PubMed ID: 14614937
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiscale computational and experimental approaches to elucidate bone and ligament mechanobiology using the ulna-radius-interosseous membrane construct as a model system.
    Knothe Tate ML; Tami AE; Netrebko P; Milz S; Docheva D
    Technol Health Care; 2012; 20(5):363-78. PubMed ID: 23079942
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Load/strain distribution between ulna and radius in the mouse forearm compression loading model.
    Lu Y; Thiagarajan G; Nicolella DP; Johnson ML
    Med Eng Phys; 2012 Apr; 34(3):350-6. PubMed ID: 21903442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of dynamic three-dimensional strain fields in the canine radius.
    Coleman JC; Hart RT; Owan I; Tankano Y; Burr DB
    J Biomech; 2002 Dec; 35(12):1677-83. PubMed ID: 12445622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental and finite element analysis of the rat ulnar loading model-correlations between strain and bone formation following fatigue loading.
    Kotha SP; Hsieh YF; Strigel RM; Müller R; Silva MJ
    J Biomech; 2004 Apr; 37(4):541-8. PubMed ID: 14996566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finite-element analysis of the mouse proximal ulna in response to elbow loading.
    Jiang F; Jalali A; Deguchi C; Chen A; Liu S; Kondo R; Minami K; Horiuchi T; Li BY; Robling AG; Chen J; Yokota H
    J Bone Miner Metab; 2019 May; 37(3):419-429. PubMed ID: 30062431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calibration of hyperelastic material properties of the human lumbar intervertebral disc under fast dynamic compressive loads.
    Wagnac E; Arnoux PJ; Garo A; El-Rich M; Aubin CE
    J Biomech Eng; 2011 Oct; 133(10):101007. PubMed ID: 22070332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ontogenetic patterns of limb loading, in vivo bone strains and growth in the goat radius.
    Main RP; Biewener AA
    J Exp Biol; 2004 Jul; 207(Pt 15):2577-88. PubMed ID: 15201290
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurement and analysis of in vivo bone strains on the canine radius and ulna.
    Carter DR; Smith DJ; Spengler DM; Daly CH; Frankel VH
    J Biomech; 1980; 13(1):27-38. PubMed ID: 7354092
    [No Abstract]   [Full Text] [Related]  

  • 10. Strain distribution within the human femur due to physiological and simplified loading: finite element analysis using the muscle standardized femur model.
    Polgár K; Gill HS; Viceconti M; Murray DW; O'Connor JJ
    Proc Inst Mech Eng H; 2003; 217(3):173-89. PubMed ID: 12807158
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elimination of the friction effects in unconfined compression tests of biomaterials and soft tissues.
    Wu JZ; Dong RG; Smutz WP
    Proc Inst Mech Eng H; 2004; 218(1):35-40. PubMed ID: 14982344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental and finite element analysis of dynamic loading of the mouse forearm.
    Thiagarajan G; Lu Y; Dallas M; Johnson ML
    J Orthop Res; 2014 Dec; 32(12):1580-8. PubMed ID: 25196694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calculation of tibial loading using strain gauges.
    Funk JR; Crandall JR
    Biomed Sci Instrum; 2006; 42():160-5. PubMed ID: 16817602
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of strain measurement in the mouse forearm using subject-specific finite element models, strain gaging, and digital image correlation.
    Begonia M; Dallas M; Johnson ML; Thiagarajan G
    Biomech Model Mechanobiol; 2017 Aug; 16(4):1243-1253. PubMed ID: 28204985
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finite element prediction of endosteal and periosteal bone remodelling in the turkey ulna: effect of remodelling signal and dead-zone definition.
    Taylor WR; Warner MD; Clift SE
    Proc Inst Mech Eng H; 2003; 217(5):349-56. PubMed ID: 14558647
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconstruction of bone loading conditions from in vivo strain measurements.
    Weinans H; Blankevoort L
    J Biomech; 1995 Jun; 28(6):739-44. PubMed ID: 7601873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multilevel finite element modeling for the prediction of local cellular deformation in bone.
    Deligianni DD; Apostolopoulos CA
    Biomech Model Mechanobiol; 2008 Apr; 7(2):151-9. PubMed ID: 17431696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro force mapping of normal canine humeroradial and humeroulnar joints.
    Mason DR; Schulz KS; Fujita Y; Kass PH; Stover SM
    Am J Vet Res; 2005 Jan; 66(1):132-5. PubMed ID: 15691048
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Finite element prediction of surface strain and fracture strength at the distal radius.
    Edwards WB; Troy KL
    Med Eng Phys; 2012 Apr; 34(3):290-8. PubMed ID: 21840240
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical modeling of long bone adaptation due to mechanical loading: correlation with experiments.
    Chennimalai Kumar N; Dantzig JA; Jasiuk IM; Robling AG; Turner CH
    Ann Biomed Eng; 2010 Mar; 38(3):594-604. PubMed ID: 20013156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.