BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 14614961)

  • 1. Reduction of NT-3 or TrkC results in fewer putative vagal mechanoreceptors in the mouse esophagus.
    Raab M; Wörl J; Brehmer A; Neuhuber WL
    Auton Neurosci; 2003 Oct; 108(1-2):22-31. PubMed ID: 14614961
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vesicular glutamate transporter 2 immunoreactivity in putative vagal mechanosensor terminals of mouse and rat esophagus: indication of a local effector function?
    Raab M; Neuhuber WL
    Cell Tissue Res; 2003 May; 312(2):141-8. PubMed ID: 12698357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intraganglionic laminar endings in the rat esophagus contain purinergic P2X2 and P2X3 receptor immunoreactivity.
    Wang ZJ; Neuhuber WL
    Anat Embryol (Berl); 2003 Dec; 207(4-5):363-71. PubMed ID: 14624359
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Number and distribution of intraganglionic laminar endings in the mouse esophagus as demonstrated with two different immunohistochemical markers.
    Raab M; Neuhuber WL
    J Histochem Cytochem; 2005 Aug; 53(8):1023-31. PubMed ID: 15923367
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neurotrophin-4 deficient mice have a loss of vagal intraganglionic mechanoreceptors from the small intestine and a disruption of short-term satiety.
    Fox EA; Phillips RJ; Baronowsky EA; Byerly MS; Jones S; Powley TL
    J Neurosci; 2001 Nov; 21(21):8602-15. PubMed ID: 11606648
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective loss of vagal intramuscular mechanoreceptors in mice mutant for steel factor, the c-Kit receptor ligand.
    Fox EA; Phillips RJ; Byerly MS; Baronowsky EA; Chi MM; Powley TL
    Anat Embryol (Berl); 2002 Jul; 205(4):325-42. PubMed ID: 12136263
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Muscarinic acetylcholine receptors in the mouse esophagus: focus on intraganglionic laminar endings (IGLEs).
    Hübsch M; Neuhuber WL; Raab M
    Neurogastroenterol Motil; 2013 Aug; 25(8):e560-73. PubMed ID: 23742744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Topographic inventories of vagal afferents in gastrointestinal muscle.
    Wang FB; Powley TL
    J Comp Neurol; 2000 Jun; 421(3):302-24. PubMed ID: 10813789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neurotrophin-3 regulates mast cell functions in neonatal mouse skin.
    Metz M; Botchkarev VA; Botchkareva NV; Welker P; Tobin DJ; Knop J; Maurer M; Paus R
    Exp Dermatol; 2004 May; 13(5):273-81. PubMed ID: 15140017
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A genetic approach for investigating vagal sensory roles in regulation of gastrointestinal function and food intake.
    Fox EA
    Auton Neurosci; 2006 Jun; 126-127():9-29. PubMed ID: 16677865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intraganglionic laminar endings act as mechanoreceptors of vagal afferent nerve in guinea pig esophagus.
    Yang X; Liu R; Brookes SJ
    Sheng Li Xue Bao; 2006 Apr; 58(2):171-6. PubMed ID: 16628365
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adenovirus-mediated retrograde transfer of neurotrophin-3 gene enhances survival of anterior horn neurons of twy/twy mice with chronic mechanical compression of the spinal cord.
    Uchida K; Nakajima H; Inukai T; Takamura T; Kobayashi S; Furukawa S; Baba H
    J Neurosci Res; 2008 Jun; 86(8):1789-800. PubMed ID: 18253945
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Afferent innervation of gastrointestinal tract smooth muscle by the hepatic branch of the vagus.
    Phillips RJ; Baronowsky EA; Powley TL
    J Comp Neurol; 1997 Jul; 384(2):248-70. PubMed ID: 9215721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. P2X(2) purine receptor immunoreactivity of intraganglionic laminar endings in the mouse gastrointestinal tract.
    Castelucci P; Robbins HL; Furness JB
    Cell Tissue Res; 2003 May; 312(2):167-74. PubMed ID: 12690440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of neurotrophin-3 gene mutation in the expression of neurocalcin.
    Germanà A; del Valle ME; Laurà R; Ciriaco E; Vega JA; Germanà G
    Ital J Anat Embryol; 2005; 110(2 Suppl 1):37-47. PubMed ID: 16101019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Limited excitatory local effector function of gastric vagal afferent intraganglionic terminals in rats.
    Zheng H; Lauve A; Patterson LM; Berthoud HR
    Am J Physiol; 1997 Sep; 273(3 Pt 1):G661-9. PubMed ID: 9316470
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distribution and structure of vagal afferent intraganglionic laminar endings (IGLEs) in the rat gastrointestinal tract.
    Berthoud HR; Patterson LM; Neumann F; Neuhuber WL
    Anat Embryol (Berl); 1997 Feb; 195(2):183-91. PubMed ID: 9045988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phenotypic characterization of gastric sensory neurons in mice.
    Bielefeldt K; Zhong F; Koerber HR; Davis BM
    Am J Physiol Gastrointest Liver Physiol; 2006 Nov; 291(5):G987-97. PubMed ID: 16728726
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vagal intraganglionic laminar endings and intramuscular arrays mature at different rates in pre-weanling rat stomach.
    Swithers SE; Baronowsky E; Powley TL
    Auton Neurosci; 2002 Nov; 102(1-2):13-9. PubMed ID: 12492131
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distribution of P2X(3) receptor immunoreactivity in myenteric ganglia of the mouse esophagus.
    Kestler C; Neuhuber WL; Raab M
    Histochem Cell Biol; 2009 Jan; 131(1):13-27. PubMed ID: 18810483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.