These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 14615163)

  • 1. A thorough physicochemical characterisation of 14 calcium phosphate-based bone substitution materials in comparison to natural bone.
    Tadic D; Epple M
    Biomaterials; 2004 Mar; 25(6):987-94. PubMed ID: 14615163
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanically stable implants of synthetic bone mineral by cold isostatic pressing.
    Tadic D; Epple M
    Biomaterials; 2003 Nov; 24(25):4565-71. PubMed ID: 12950999
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural characterization and mechanical performance of calcium phosphate scaffolds and natural bones: a comparative study.
    Fuentes E; Sáenz de Viteri V; Igartua A; Martinetti R; Dolcini L; Barandika G
    J Appl Biomater Biomech; 2010; 8(3):159-65. PubMed ID: 21337307
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical and Biocompatibility Properties of Calcium Phosphate Bioceramics Derived from Salmon Fish Bone Wastes.
    Bas M; Daglilar S; Kuskonmaz N; Kalkandelen C; Erdemir G; Kuruca SE; Tulyaganov D; Yoshioka T; Gunduz O; Ficai D; Ficai A
    Int J Mol Sci; 2020 Oct; 21(21):. PubMed ID: 33138182
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of β-tricalcium phosphate.
    Chaair H; Labjar H; Britel O
    Morphologie; 2017 Sep; 101(334):120-124. PubMed ID: 28942348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Review paper: behavior of ceramic biomaterials derived from tricalcium phosphate in physiological condition.
    Kamitakahara M; Ohtsuki C; Miyazaki T
    J Biomater Appl; 2008 Nov; 23(3):197-212. PubMed ID: 18996965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthetic calcium phosphate ceramics for treatment of bone fractures.
    Döbelin N; Luginbühl R; Bohner M
    Chimia (Aarau); 2010; 64(10):723-9. PubMed ID: 21138161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The improved biological response of shark tooth bioapatites in a comparative in vitro study with synthetic and bovine bone grafts.
    López-Álvarez M; Pérez-Davila S; Rodríguez-Valencia C; González P; Serra J
    Biomed Mater; 2016 Jun; 11(3):035011. PubMed ID: 27271863
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [The preparation of sintered bovine cancellous bone and a study of its mechanical and chemical behavior and biocompatibility].
    Zheng Q; Liu S
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Feb; 22(1):95-8. PubMed ID: 15762125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative study on in vitro biocompatibility of synthetic octacalcium phosphate and calcium phosphate ceramics used clinically.
    Morimoto S; Anada T; Honda Y; Suzuki O
    Biomed Mater; 2012 Aug; 7(4):045020. PubMed ID: 22740587
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical model to determine the effects of geometrical factors on the resorption of calcium phosphate bone substitutes.
    Bohner M; Baumgart F
    Biomaterials; 2004 Aug; 25(17):3569-82. PubMed ID: 15020131
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physicochemical characterization of biomaterials commonly used in dentistry as bone substitutes--comparison with human bone.
    Figueiredo M; Henriques J; Martins G; Guerra F; Judas F; Figueiredo H
    J Biomed Mater Res B Appl Biomater; 2010 Feb; 92(2):409-419. PubMed ID: 19904820
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoscale surface characterization of biphasic calcium phosphate, with comparisons to calcium hydroxyapatite and β-tricalcium phosphate bioceramics.
    França R; Samani TD; Bayade G; Yahia L; Sacher E
    J Colloid Interface Sci; 2014 Apr; 420():182-8. PubMed ID: 24559717
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of apatite ceramics containing alpha-tricalcium phosphate by immersion in simulated body fluid.
    Hirakata LM; Kon M; Asaoka K
    Biomed Mater Eng; 2003; 13(3):247-59. PubMed ID: 12883174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Osteoblast interactions with calcium phosphate ceramics modified by coating with type I collagen.
    Brodie JC; Goldie E; Connel G; Merry J; Grant MH
    J Biomed Mater Res A; 2005 Jun; 73(4):409-21. PubMed ID: 15892144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physicochemical characterization of two deproteinized bovine xenografts.
    Accorsi-Mendonça T; Conz MB; Barros TC; de Sena LA; Soares Gde A; Granjeiro JM
    Braz Oral Res; 2008; 22(1):5-10. PubMed ID: 18425238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation of a biphasic porous bioceramic by heating bovine cancellous bone with Na4P2O7.10H2O addition.
    Lin FH; Liao CJ; Chen KS; Sun JS
    Biomaterials; 1999 Mar; 20(5):475-84. PubMed ID: 10204990
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of bone response to synthetic bone grafting material treated with argon-based atmospheric pressure plasma.
    Beutel BG; Danna NR; Gangolli R; Granato R; Manne L; Tovar N; Coelho PG
    Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():484-90. PubMed ID: 25491854
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TEM study of calcium phosphate precipitation on HA/TCP ceramics.
    Leng Y; Chen J; Qu S
    Biomaterials; 2003 Jun; 24(13):2125-31. PubMed ID: 12699649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparative study of biphasic calcium phosphate ceramics for human mesenchymal stem-cell-induced bone formation.
    Arinzeh TL; Tran T; Mcalary J; Daculsi G
    Biomaterials; 2005 Jun; 26(17):3631-8. PubMed ID: 15621253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.