BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 14615431)

  • 1. Different mechanisms involved in adaptation to stable and unstable dynamics.
    Osu R; Burdet E; Franklin DW; Milner TE; Kawato M
    J Neurophysiol; 2003 Nov; 90(5):3255-69. PubMed ID: 14615431
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptation to stable and unstable dynamics achieved by combined impedance control and inverse dynamics model.
    Franklin DW; Osu R; Burdet E; Kawato M; Milner TE
    J Neurophysiol; 2003 Nov; 90(5):3270-82. PubMed ID: 14615432
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The central nervous system stabilizes unstable dynamics by learning optimal impedance.
    Burdet E; Osu R; Franklin DW; Milner TE; Kawato M
    Nature; 2001 Nov; 414(6862):446-9. PubMed ID: 11719805
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stability and motor adaptation in human arm movements.
    Burdet E; Tee KP; Mareels I; Milner TE; Chew CM; Franklin DW; Osu R; Kawato M
    Biol Cybern; 2006 Jan; 94(1):20-32. PubMed ID: 16283374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Concurrent adaptation of force and impedance in the redundant muscle system.
    Tee KP; Franklin DW; Kawato M; Milner TE; Burdet E
    Biol Cybern; 2010 Jan; 102(1):31-44. PubMed ID: 19936778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of haptic guidance in learning a novel visuomotor task.
    van Asseldonk EH; Wessels M; Stienen AH; van der Helm FC; van der Kooij H
    J Physiol Paris; 2009; 103(3-5):276-85. PubMed ID: 19665551
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid adaptation to scaled changes of the mechanical environment.
    Hinder MR; Milner TE
    J Neurophysiol; 2007 Nov; 98(5):3072-80. PubMed ID: 17898150
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Force field adaptation can be learned using vision in the absence of proprioceptive error.
    Melendez-Calderon A; Masia L; Gassert R; Sandini G; Burdet E
    IEEE Trans Neural Syst Rehabil Eng; 2011 Jun; 19(3):298-306. PubMed ID: 21652280
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Position information but not force information is used in adapting to changes in environmental dynamics.
    Milner TE; Hinder MR
    J Neurophysiol; 2006 Aug; 96(2):526-34. PubMed ID: 16611847
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Separate adaptive mechanisms for controlling trajectory and final position in reaching.
    Scheidt RA; Ghez C
    J Neurophysiol; 2007 Dec; 98(6):3600-13. PubMed ID: 17913996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scaling down motor memories: de-adaptation after motor learning.
    Davidson PR; Wolpert DM
    Neurosci Lett; 2004 Nov; 370(2-3):102-7. PubMed ID: 15488303
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impedance control balances stability with metabolically costly muscle activation.
    Franklin DW; So U; Kawato M; Milner TE
    J Neurophysiol; 2004 Nov; 92(5):3097-105. PubMed ID: 15201309
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulating closed- and open-loop voluntary movement: a nonlinear control-systems approach.
    Davidson PR; Jones RD; Andreae JH; Sirisena HR
    IEEE Trans Biomed Eng; 2002 Nov; 49(11):1242-52. PubMed ID: 12450354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional significance of stiffness in adaptation of multijoint arm movements to stable and unstable dynamics.
    Franklin DW; Burdet E; Osu R; Kawato M; Milner TE
    Exp Brain Res; 2003 Jul; 151(2):145-57. PubMed ID: 12783150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An internal model for acquisition and retention of motor learning during arm reaching.
    Lonini L; Dipietro L; Zollo L; Guglielmelli E; Krebs HI
    Neural Comput; 2009 Jul; 21(7):2009-27. PubMed ID: 19323640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How is somatosensory information used to adapt to changes in the mechanical environment?
    Milner TE; Hinder MR; Franklin DW
    Prog Brain Res; 2007; 165():363-72. PubMed ID: 17925257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Learning and generation of goal-directed arm reaching from scratch.
    Kambara H; Kim K; Shin D; Sato M; Koike Y
    Neural Netw; 2009 May; 22(4):348-61. PubMed ID: 19121565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuronal activity in the supplementary motor area of monkeys adapting to a new dynamic environment.
    Padoa-Schioppa C; Li CS; Bizzi E
    J Neurophysiol; 2004 Jan; 91(1):449-73. PubMed ID: 12968016
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural correlates associated with intermanual transfer of sensorimotor adaptation.
    Anguera JA; Russell CA; Noll DC; Seidler RD
    Brain Res; 2007 Dec; 1185():136-51. PubMed ID: 17996854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel strategies in feedforward adaptation to a position-dependent perturbation.
    Hinder MR; Milner TE
    Exp Brain Res; 2005 Aug; 165(2):239-49. PubMed ID: 15856204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.