BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 14615432)

  • 1. Adaptation to stable and unstable dynamics achieved by combined impedance control and inverse dynamics model.
    Franklin DW; Osu R; Burdet E; Kawato M; Milner TE
    J Neurophysiol; 2003 Nov; 90(5):3270-82. PubMed ID: 14615432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Different mechanisms involved in adaptation to stable and unstable dynamics.
    Osu R; Burdet E; Franklin DW; Milner TE; Kawato M
    J Neurophysiol; 2003 Nov; 90(5):3255-69. PubMed ID: 14615431
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impedance control balances stability with metabolically costly muscle activation.
    Franklin DW; So U; Kawato M; Milner TE
    J Neurophysiol; 2004 Nov; 92(5):3097-105. PubMed ID: 15201309
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Position information but not force information is used in adapting to changes in environmental dynamics.
    Milner TE; Hinder MR
    J Neurophysiol; 2006 Aug; 96(2):526-34. PubMed ID: 16611847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stability and motor adaptation in human arm movements.
    Burdet E; Tee KP; Mareels I; Milner TE; Chew CM; Franklin DW; Osu R; Kawato M
    Biol Cybern; 2006 Jan; 94(1):20-32. PubMed ID: 16283374
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid adaptation to scaled changes of the mechanical environment.
    Hinder MR; Milner TE
    J Neurophysiol; 2007 Nov; 98(5):3072-80. PubMed ID: 17898150
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The central nervous system stabilizes unstable dynamics by learning optimal impedance.
    Burdet E; Osu R; Franklin DW; Milner TE; Kawato M
    Nature; 2001 Nov; 414(6862):446-9. PubMed ID: 11719805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Saccade adaptation in response to altered arm dynamics.
    Nanayakkara T; Shadmehr R
    J Neurophysiol; 2003 Dec; 90(6):4016-21. PubMed ID: 14665687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional significance of stiffness in adaptation of multijoint arm movements to stable and unstable dynamics.
    Franklin DW; Burdet E; Osu R; Kawato M; Milner TE
    Exp Brain Res; 2003 Jul; 151(2):145-57. PubMed ID: 12783150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scaling down motor memories: de-adaptation after motor learning.
    Davidson PR; Wolpert DM
    Neurosci Lett; 2004 Nov; 370(2-3):102-7. PubMed ID: 15488303
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vision of the hand prior to movement onset allows full motor adaptation to a multi-force environment.
    Bourdin C; Bringoux L; Gauthier GM; Vercher JL
    Brain Res Bull; 2006 Dec; 71(1-3):101-10. PubMed ID: 17113935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequence, time, or state representation: how does the motor control system adapt to variable environments?
    Karniel A; Mussa-Ivaldi FA
    Biol Cybern; 2003 Jul; 89(1):10-21. PubMed ID: 12836029
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generalization of motor learning based on multiple field exposures and local adaptation.
    Malfait N; Gribble PL; Ostry DJ
    J Neurophysiol; 2005 Jun; 93(6):3327-38. PubMed ID: 15659531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel strategies in feedforward adaptation to a position-dependent perturbation.
    Hinder MR; Milner TE
    Exp Brain Res; 2005 Aug; 165(2):239-49. PubMed ID: 15856204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulating closed- and open-loop voluntary movement: a nonlinear control-systems approach.
    Davidson PR; Jones RD; Andreae JH; Sirisena HR
    IEEE Trans Biomed Eng; 2002 Nov; 49(11):1242-52. PubMed ID: 12450354
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How is somatosensory information used to adapt to changes in the mechanical environment?
    Milner TE; Hinder MR; Franklin DW
    Prog Brain Res; 2007; 165():363-72. PubMed ID: 17925257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptation of reflexive feedback during arm posture to different environments.
    de Vlugt E; Schouten AC; van der Helm FC
    Biol Cybern; 2002 Jul; 87(1):10-26. PubMed ID: 12111265
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Motor adaptation as a greedy optimization of error and effort.
    Emken JL; Benitez R; Sideris A; Bobrow JE; Reinkensmeyer DJ
    J Neurophysiol; 2007 Jun; 97(6):3997-4006. PubMed ID: 17392418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hereditary cerebellar ataxia progressively impairs force adaptation during goal-directed arm movements.
    Maschke M; Gomez CM; Ebner TJ; Konczak J
    J Neurophysiol; 2004 Jan; 91(1):230-8. PubMed ID: 13679403
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuromotor noise limits motor performance, but not motor adaptation, in children.
    Takahashi CD; Nemet D; Rose-Gottron CM; Larson JK; Cooper DM; Reinkensmeyer DJ
    J Neurophysiol; 2003 Aug; 90(2):703-11. PubMed ID: 12904490
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.