These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 14615478)
1. Heme oxygenase in Candida albicans is regulated by hemoglobin and is necessary for metabolism of exogenous heme and hemoglobin to alpha-biliverdin. Pendrak ML; Chao MP; Yan SS; Roberts DD J Biol Chem; 2004 Jan; 279(5):3426-33. PubMed ID: 14615478 [TBL] [Abstract][Full Text] [Related]
2. Fungal heme oxygenases: Functional expression and characterization of Hmx1 from Saccharomyces cerevisiae and CaHmx1 from Candida albicans. Kim D; Yukl ET; Moënne-Loccoz P; Montellano PR Biochemistry; 2006 Dec; 45(49):14772-80. PubMed ID: 17144670 [TBL] [Abstract][Full Text] [Related]
3. Sensing the host environment: recognition of hemoglobin by the pathogenic yeast Candida albicans. Pendrak ML; Yan SS; Roberts DD Arch Biochem Biophys; 2004 Jun; 426(2):148-56. PubMed ID: 15158665 [TBL] [Abstract][Full Text] [Related]
4. Haemin uptake and use as an iron source by Candida albicans: role of CaHMX1-encoded haem oxygenase. Santos R; Buisson N; Knight S; Dancis A; Camadro JM; Lesuisse E Microbiology (Reading); 2003 Mar; 149(Pt 3):579-588. PubMed ID: 12634327 [TBL] [Abstract][Full Text] [Related]
5. Regulation of heme utilization and homeostasis in Candida albicans. Andrawes N; Weissman Z; Pinsky M; Moshe S; Berman J; Kornitzer D PLoS Genet; 2022 Sep; 18(9):e1010390. PubMed ID: 36084128 [TBL] [Abstract][Full Text] [Related]
6. Regulation of intracellular heme levels by HMX1, a homologue of heme oxygenase, in Saccharomyces cerevisiae. Protchenko O; Philpott CC J Biol Chem; 2003 Sep; 278(38):36582-7. PubMed ID: 12840010 [TBL] [Abstract][Full Text] [Related]
7. Utilization of ferroproteins by Candida albicans during candidastasis by apotransferrin. Han Y Arch Pharm Res; 2005 Aug; 28(8):963-9. PubMed ID: 16178424 [TBL] [Abstract][Full Text] [Related]
8. Small interference RNA-mediated gene silencing of human biliverdin reductase, but not that of heme oxygenase-1, attenuates arsenite-mediated induction of the oxygenase and increases apoptosis in 293A kidney cells. Miralem T; Hu Z; Torno MD; Lelli KM; Maines MD J Biol Chem; 2005 Apr; 280(17):17084-92. PubMed ID: 15741166 [TBL] [Abstract][Full Text] [Related]
9. Heme oxygenase-1 gene activation by the NAD(P)H oxidase inhibitor 4-(2-aminoethyl) benzenesulfonyl fluoride via a protein kinase B, p38-dependent signaling pathway in monocytes. Wijayanti N; Kietzmann T; Immenschuh S J Biol Chem; 2005 Jun; 280(23):21820-9. PubMed ID: 15833736 [TBL] [Abstract][Full Text] [Related]
10. Identification of a two-component signal transduction system from Corynebacterium diphtheriae that activates gene expression in response to the presence of heme and hemoglobin. Schmitt MP J Bacteriol; 1999 Sep; 181(17):5330-40. PubMed ID: 10464204 [TBL] [Abstract][Full Text] [Related]
11. Using genetically encoded heme sensors to probe the mechanisms of heme uptake and homeostasis in Candida albicans. Weissman Z; Pinsky M; Donegan RK; Reddi AR; Kornitzer D Cell Microbiol; 2021 Feb; 23(2):e13282. PubMed ID: 33104284 [TBL] [Abstract][Full Text] [Related]
12. Biliverdin reductase, a novel regulator for induction of activating transcription factor-2 and heme oxygenase-1. Kravets A; Hu Z; Miralem T; Torno MD; Maines MD J Biol Chem; 2004 May; 279(19):19916-23. PubMed ID: 14988408 [TBL] [Abstract][Full Text] [Related]
13. Functional identification of HugZ, a heme oxygenase from Helicobacter pylori. Guo Y; Guo G; Mao X; Zhang W; Xiao J; Tong W; Liu T; Xiao B; Liu X; Feng Y; Zou Q BMC Microbiol; 2008 Dec; 8():226. PubMed ID: 19091096 [TBL] [Abstract][Full Text] [Related]
14. Homologues of neisserial heme oxygenase in gram-negative bacteria: degradation of heme by the product of the pigA gene of Pseudomonas aeruginosa. Ratliff M; Zhu W; Deshmukh R; Wilks A; Stojiljkovic I J Bacteriol; 2001 Nov; 183(21):6394-403. PubMed ID: 11591684 [TBL] [Abstract][Full Text] [Related]
15. A heme-degradation pathway in a blood-sucking insect. Paiva-Silva GO; Cruz-Oliveira C; Nakayasu ES; Maya-Monteiro CM; Dunkov BC; Masuda H; Almeida IC; Oliveira PL Proc Natl Acad Sci U S A; 2006 May; 103(21):8030-5. PubMed ID: 16698925 [TBL] [Abstract][Full Text] [Related]
16. Expression and characterization of cyanobacterium heme oxygenase, a key enzyme in the phycobilin synthesis. Properties of the heme complex of recombinant active enzyme. Migita CT; Zhang X; Yoshida T Eur J Biochem; 2003 Feb; 270(4):687-98. PubMed ID: 12581208 [TBL] [Abstract][Full Text] [Related]
17. Unique features of recombinant heme oxygenase of Drosophila melanogaster compared with those of other heme oxygenases studied. Zhang X; Sato M; Sasahara M; Migita CT; Yoshida T Eur J Biochem; 2004 May; 271(9):1713-24. PubMed ID: 15096210 [TBL] [Abstract][Full Text] [Related]
18. Aryl hydrocarbon receptor-dependent induction of cyp1a1 by bilirubin in mouse hepatoma hepa 1c1c7 cells. Sinal CJ; Bend JR Mol Pharmacol; 1997 Oct; 52(4):590-9. PubMed ID: 9380021 [TBL] [Abstract][Full Text] [Related]
19. Heme utilization in Campylobacter jejuni. Ridley KA; Rock JD; Li Y; Ketley JM J Bacteriol; 2006 Nov; 188(22):7862-75. PubMed ID: 16980451 [TBL] [Abstract][Full Text] [Related]
20. Separation and identification of the regioisomers of verdoheme by reversed-phase ion-pair high-performance liquid chromatography, and characterization of their complexes with heme oxygenase. Sakamoto H; Omata Y; Adachi Y; Palmer G; Noguchi M J Inorg Biochem; 2000 Nov; 82(1-4):113-21. PubMed ID: 11132617 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]