BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 14615984)

  • 1. Analytical approaches to improved characterization of substitution in hydroxypropyl cellulose.
    Richardson S; Andersson T; Brinkmalm G; Wittgren B
    Anal Chem; 2003 Nov; 75(22):6077-83. PubMed ID: 14615984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of chemical substitution of hydroxypropyl cellulose using enzymatic degradation.
    Schagerlöf H; Richardson S; Momcilovic D; Brinkmalm G; Wittgren B; Tjerneld F
    Biomacromolecules; 2006 Jan; 7(1):80-5. PubMed ID: 16398501
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies on the synthesis of 2,3-o-hydroxyalkyl ethers of cellulose.
    Schaller J; Heinze T
    Macromol Biosci; 2005 Jan; 5(1):58-63. PubMed ID: 15635716
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Initial characterization of ethyl(hydroxyethyl) cellulose using enzymic degradation and chromatographic methods.
    Richardson S; Lundqvist J; Wittgren B; Tjerneld F; Gorton L
    Biomacromolecules; 2002; 3(6):1359-63. PubMed ID: 12425676
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzymatic synthesis of cellulose II-like substance via cellulolytic enzyme-mediated transglycosylation in an aqueous medium.
    Hattori T; Ogata M; Kameshima Y; Totani K; Nikaido M; Nakamura T; Koshino H; Usui T
    Carbohydr Res; 2012 May; 353():22-6. PubMed ID: 22533921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A facile method to control the phase behavior of hydroxypropyl cellulose.
    Gosecki M; Setälä H; Virtanen T; Ryan AJ
    Carbohydr Polym; 2021 Jan; 251():117015. PubMed ID: 33152849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved chemical analysis of cellulose ethers using dialkylamine derivatization and mass spectrometry.
    Momcilovic D; Schagerlöf H; Wittgren B; Wahlund KG; Brinkmalm G
    Biomacromolecules; 2005; 6(5):2793-9. PubMed ID: 16153120
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards elucidation of the drug release mechanism from compressed hydrophilic matrices made of cellulose ethers. I. Pulse-field-gradient spin-echo NMR study of sodium salicylate diffusivity in swollen hydrogels with respect to polymer matrix physical structure.
    Ferrero C; Massuelle D; Jeannerat D; Doelker E
    J Control Release; 2008 May; 128(1):71-9. PubMed ID: 18433910
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison of gas-liquid chromatography, NMR spectroscopy and Raman spectroscopy for determination of the substituent content of general non-ionic cellulose ethers.
    Alvarez-Lorenzo C; Lorenzo-Ferreira RA; Gómez-Amoza JL; Martínez-Pacheco R; Souto C; Concheiro A
    J Pharm Biomed Anal; 1999 Jun; 20(1-2):373-83. PubMed ID: 10704045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comprehensive analysis of the substituent distribution in hydroxyethyl celluloses by quantitative MALDI-ToF-MS.
    Adden R; Müller R; Brinkmalm G; Ehrler R; Mischnick P
    Macromol Biosci; 2006 Jun; 6(6):435-44. PubMed ID: 16761275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry to insoluble glucose oligomers in decomposed cellulose.
    Sumi T; Sakaki T; Ohba H; Shibata M
    Rapid Commun Mass Spectrom; 2000; 14(19):1823-7. PubMed ID: 11006591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functionalization of multiwalled carbon nanotubes by pyrene-labeled hydroxypropyl cellulose.
    Yang Q; Shuai L; Zhou J; Lu F; Pan X
    J Phys Chem B; 2008 Oct; 112(41):12934-9. PubMed ID: 18808180
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical structure analysis of starch and cellulose derivatives.
    Mischnick P; Momcilovic D
    Adv Carbohydr Chem Biochem; 2010; 64():117-210. PubMed ID: 20837199
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of the substitution pattern of cellulose derivatives using carbohydrate-binding modules.
    von Schantz L; Schagerlöf H; Nordberg Karlsson E; Ohlin M
    BMC Biotechnol; 2014 Dec; 14():113. PubMed ID: 25540113
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of water with different cellulose ethers: a Raman spectroscopy and environmental scanning electron microscopy study.
    Fechner PM; Wartewig S; Kiesow A; Heilmann A; Kleinebudde P; Neubert RH
    J Pharm Pharmacol; 2005 Jun; 57(6):689-98. PubMed ID: 15969923
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comb polymers prepared by ATRP from hydroxypropyl cellulose.
    Ostmark E; Harrisson S; Wooley KL; Malmström EE
    Biomacromolecules; 2007 Apr; 8(4):1138-48. PubMed ID: 17367185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of the degree of substitution in the transition temperatures and hydrophobicity of hydroxypropyl cellulose esters.
    López-Velázquez D; Hernández-Sosa AR; Pérez E
    Carbohydr Polym; 2015 Jul; 125():224-31. PubMed ID: 25857978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct matrix-assisted laser desorption/ionization mass spectrometric imaging of cellulose and hemicellulose in Populus tissue.
    Lunsford KA; Peter GF; Yost RA
    Anal Chem; 2011 Sep; 83(17):6722-30. PubMed ID: 21766865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and characterization of camphorsulfonyl acetate of cellulose.
    Xiao D; Hu J; Zhang M; Li M; Wang G; Yao H
    Carbohydr Res; 2004 Aug; 339(11):1925-31. PubMed ID: 15261585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modern mass spectrometry in the characterization and degradation of biodegradable polymers.
    Rizzarelli P; Carroccio S
    Anal Chim Acta; 2014 Jan; 808():18-43. PubMed ID: 24370091
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.