These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 14616034)

  • 1. Method for patterning stretched DNA molecules on mica surfaces by soft lithography.
    Gad M; Sugiyama S; Ohtani T
    J Biomol Struct Dyn; 2003 Dec; 21(3):387-93. PubMed ID: 14616034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Method for orienting DNA molecules on mica surfaces in one direction for atomic force microscopy imaging.
    Gad M; Machida M; Mizutani W; Ishikawa M
    J Biomol Struct Dyn; 2001 Dec; 19(3):471-7. PubMed ID: 11790145
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assembly of highly aligned DNA strands onto Si chips.
    Zhang J; Ma Y; Stachura S; He H
    Langmuir; 2005 Apr; 21(9):4180-4. PubMed ID: 15835992
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Soft lithographic printing of patterns of stretched DNA and DNA/electronic polymer wires by surface-energy modification and transfer.
    Björk P; Holmström S; Inganäs O
    Small; 2006 Aug; 2(8-9):1068-74. PubMed ID: 17193170
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atomic force microscopy of DNA molecules stretched by spin-coating technique.
    Ye JY; Umemura K; Ishikawa M; Kuroda R
    Anal Biochem; 2000 May; 281(1):21-5. PubMed ID: 10847606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microscale features and surface chemical functionality patterned by electron beam lithography: a novel route to poly(dimethylsiloxane) (PDMS) stamp fabrication.
    Russell MT; Pingree LS; Hersam MC; Marks TJ
    Langmuir; 2006 Jul; 22(15):6712-8. PubMed ID: 16831018
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Patterning DNA on microm scale on mica.
    Fujita M; Mizutani W; Gad M; Shigekawa H; Tokumoto H
    Ultramicroscopy; 2002 May; 91(1-4):281-5. PubMed ID: 12211480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scanning force microscopy of DNA deposited onto mica: equilibration versus kinetic trapping studied by statistical polymer chain analysis.
    Rivetti C; Guthold M; Bustamante C
    J Mol Biol; 1996 Dec; 264(5):919-32. PubMed ID: 9000621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Poly(dimethylsiloxane) contamination in microcontact printing and its influence on patterning oligonucleotides.
    Thibault C; Séverac C; Mingotaud AF; Vieu C; Mauzac M
    Langmuir; 2007 Oct; 23(21):10706-14. PubMed ID: 17803329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanomanipulation of extended single-DNA molecules on modified mica surfaces using the atomic force microscopy.
    Lü JH
    Colloids Surf B Biointerfaces; 2004 Dec; 39(4):177-80. PubMed ID: 15555900
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transfer-printing of highly aligned DNA nanowires.
    Nakao H; Gad M; Sugiyama S; Otobe K; Ohtani T
    J Am Chem Soc; 2003 Jun; 125(24):7162-3. PubMed ID: 12797774
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Imaging stretched single DNA molecules by pulsed-force-mode atomic force microscopy.
    Kwak KJ; Kudo H; Fujihira M
    Ultramicroscopy; 2003; 97(1-4):249-55. PubMed ID: 12801677
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microscopic analysis of DNA and DNA-protein assembly by transmission electron microscopy, scanning tunneling microscopy and scanning force microscopy.
    Müller-Reichert T; Gross H
    Scanning Microsc Suppl; 1996; 10():111-20; discussion 120-1. PubMed ID: 9601534
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transferring complementary target DNA from aqueous solutions onto solid surfaces by using affinity microcontact printing.
    Tan H; Huang S; Yang KL
    Langmuir; 2007 Jul; 23(16):8607-13. PubMed ID: 17592863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlled immobilization of DNA molecules using chemical modification of mica surfaces for atomic force microscopy: characterization in air.
    Umemura K; Ishikawa M; Kuroda R
    Anal Biochem; 2001 Mar; 290(2):232-7. PubMed ID: 11237324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. pH- and salt-dependent molecular combing of DNA: experiments and phenomenological model.
    Benke A; Mertig M; Pompe W
    Nanotechnology; 2011 Jan; 22(3):035304. PubMed ID: 21149967
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Imaging compaction of single supercoiled DNA molecules by atomic force microscopy.
    Limanskaya OY; Limanskii AP
    Gen Physiol Biophys; 2008 Dec; 27(4):322-37. PubMed ID: 19202207
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atomic force microscopy of DNA, nucleoproteins and cellular complexes: the use of functionalized substrates.
    Lyubchenko YL; Blankenship RE; Gall AA; Lindsay SM; Thiemann O; Simpson L; Shlyakhtenko LS
    Scanning Microsc Suppl; 1996; 10():97-107; discussion 107-9. PubMed ID: 9601533
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of aminosilane-functionalized mica for atomic force microscopy imaging of DNA.
    Crampton N; Bonass WA; Kirkham J; Thomson NH
    Langmuir; 2005 Aug; 21(17):7884-91. PubMed ID: 16089396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct patterning of silanized-biomolecules on semiconductor surfaces.
    Nyamjav D; Holz RC
    Langmuir; 2010 Dec; 26(23):18300-2. PubMed ID: 21047099
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.