BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 1461633)

  • 21. Regulation of the vitellogenin receptor during Drosophila melanogaster oogenesis.
    Schonbaum CP; Perrino JJ; Mahowald AP
    Mol Biol Cell; 2000 Feb; 11(2):511-21. PubMed ID: 10679010
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cytokeratin intermediate filament organisation and dynamics in the vegetal cortex of living Xenopus laevis oocytes and eggs.
    Clarke EJ; Allan VJ
    Cell Motil Cytoskeleton; 2003 Sep; 56(1):13-26. PubMed ID: 12905528
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Antispectrin antibodies stain the oocyte nucleus and the site of fertilization channels in the egg of Discoglossus pictus (Anura).
    Campanella C; Carotenuto R; Gabbiani G
    Mol Reprod Dev; 1990 Jun; 26(2):134-42. PubMed ID: 1695511
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Changes in nuclear localization of An3, a RNA helicase, during oogenesis and embryogenesis in Xenopus laevis.
    Longo FJ; Mathews L; Gururajan R; Chen J; Weeks DL
    Mol Reprod Dev; 1996 Dec; 45(4):491-502. PubMed ID: 8956288
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Translocation of a localized maternal mRNA to the vegetal pole of Xenopus oocytes.
    Melton DA
    Nature; 1987 Jul 2-8; 328(6125):80-2. PubMed ID: 3600777
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [A morphological study of the keratin cytoskeleton of the oocyte from the clawed toad using heterologous monoclonal antibodies].
    Riabova LV; Lehtonen E; Wartiovaara J; Vasetskiĭ SG
    Ontogenez; 1993; 24(6):22-32. PubMed ID: 7507583
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Organisation of Xenopus oocyte and egg cortices.
    Chang P; Pérez-Mongiovi D; Houliston E
    Microsc Res Tech; 1999 Mar; 44(6):415-29. PubMed ID: 10211675
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Differentiation of the animal-vegetal axis in Xenopus laevis oocytes. I. Polarized intracellular translocation of platelets establishes the yolk gradient.
    Danilchik MV; Gerhart JC
    Dev Biol; 1987 Jul; 122(1):101-12. PubMed ID: 3596006
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Implication of gap junction coupling in amphibian vitellogenin uptake.
    Mónaco ME; Villecco EI; Sánchez SS
    Zygote; 2007 May; 15(2):149-57. PubMed ID: 17462107
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Accumulation of yolk in a caecilian (Gegeneophis ramaswamii) oocyte: a light and transmission electron microscopic study.
    Beyo RS; Divya L; Oommen OV; Akbarsha MA
    J Morphol; 2008 Nov; 269(11):1412-24. PubMed ID: 18777571
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Factors affecting oogenesis in the South African clawed frog (Xenopus laevis).
    Green SL
    Comp Med; 2002 Aug; 52(4):307-12. PubMed ID: 12211272
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [The effects of exogenous actin-binding casein kinase injected into the oocytes and ova of the clawed toad].
    Riabova LV; Elizarov SM; Vasetskiĭ SG
    Ontogenez; 2000; 31(1):14-20. PubMed ID: 10732358
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Formation of binucleated cardiac myocytes in rat heart: I. Role of actin-myosin contractile ring.
    Li F; Wang X; Bunger PC; Gerdes AM
    J Mol Cell Cardiol; 1997 Jun; 29(6):1541-51. PubMed ID: 9220340
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Localization of nonerythroid spectrin and actin in mouse oocytes and preimplantation embryos.
    Reima I; Lehtonen E
    Differentiation; 1985; 30(1):68-75. PubMed ID: 4092865
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The ultrastructural aspects of vitellogenesis or oocyte secondary growth in Serrasalmus spilopleura (Teleostei, Characiformes, Serrasalminae).
    Guimarães AC; Quagio-Grassiotto I
    J Submicrosc Cytol Pathol; 2002 Apr; 34(2):199-206. PubMed ID: 12117281
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Vascular smooth muscle cell phenotypic modulation in culture is associated with reorganisation of contractile and cytoskeletal proteins.
    Worth NF; Rolfe BE; Song J; Campbell GR
    Cell Motil Cytoskeleton; 2001 Jul; 49(3):130-45. PubMed ID: 11668582
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The role of protein kinase C in reorganization of the cortical cytoskeleton during the transition from oocyte to fertilization-competent egg.
    Capco DG; Tutnick JM; Bement WM
    J Exp Zool; 1992 Dec; 264(4):395-405. PubMed ID: 1460437
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Oogenesis in the viviparous matrotrophic lizard Mabuya brachypoda.
    Hernández-Franyutti A; Uribe Aranzábal MC; Guillette LJ
    J Morphol; 2005 Aug; 265(2):152-64. PubMed ID: 15959907
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Studies on oogenesis and oviposition in the brown spider Loxosceles intermedia (Araneae: Sicariidae).
    Morishita R; Aparecida Ferreira S; Santiago Filha A; Ditzel Faraco C
    Anat Rec A Discov Mol Cell Evol Biol; 2003 Jul; 273(1):575-82. PubMed ID: 12808642
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular characterization and expression profiles of cyclin B1, B2 and Cdc2 kinase during oogenesis and spermatogenesis in rainbow trout (Oncorhynchus mykiss).
    Qiu GF; Ramachandra RK; Rexroad CE; Yao J
    Anim Reprod Sci; 2008 May; 105(3-4):209-25. PubMed ID: 17399922
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.