BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 1461655)

  • 1. Rearrangement of the human tre oncogene by homologous recombination between Alu repeats of nucleotide sequences from two different chromosomes.
    Onno M; Nakamura T; Hillova J; Hill M
    Oncogene; 1992 Dec; 7(12):2519-23. PubMed ID: 1461655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adenosine deaminase (ADA) deficiency due to deletion of the ADA gene promoter and first exon by homologous recombination between two Alu elements.
    Markert ML; Hutton JJ; Wiginton DA; States JC; Kaufman RE
    J Clin Invest; 1988 May; 81(5):1323-7. PubMed ID: 3366897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A rearranged transforming gene, tre, is made up of human sequences derived from chromosome regions 5q, 17q and 18q.
    Huebner K; Cannizzaro LA; Nakamura T; Hillova J; Mariage-Samson R; Hecht F; Hill M; Croce CM
    Oncogene; 1988 Oct; 3(4):449-55. PubMed ID: 3274085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA sequence analysis of the major breakpoint cluster region of the BCR gene rearranged in Philadelphia-positive human leukemias.
    Sowerby SJ; Kennedy MA; Fitzgerald PH; Morris CM
    Oncogene; 1993 Jun; 8(6):1679-83. PubMed ID: 8502487
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of a precursor genomic segment that provided a sequence unique to glycophorin B and E genes.
    Onda M; Kudo S; Rearden A; Mattei MG; Fukuda M
    Proc Natl Acad Sci U S A; 1993 Aug; 90(15):7220-4. PubMed ID: 8346238
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alpha-galactosidase A gene rearrangements causing Fabry disease. Identification of short direct repeats at breakpoints in an Alu-rich gene.
    Kornreich R; Bishop DF; Desnick RJ
    J Biol Chem; 1990 Jun; 265(16):9319-26. PubMed ID: 2160973
    [TBL] [Abstract][Full Text] [Related]  

  • 7. cDNAs derived from primary and small cytoplasmic Alu (scAlu) transcripts.
    Shaikh TH; Roy AM; Kim J; Batzer MA; Deininger PL
    J Mol Biol; 1997 Aug; 271(2):222-34. PubMed ID: 9268654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ph1+bcr- acute leukemias: implication of Alu sequences in a chromosomal translocation occurring in the new cluster region within the BCR gene.
    Chen SJ; Chen Z; d'Auriol L; Le Coniat M; Grausz D; Berger R
    Oncogene; 1989 Feb; 4(2):195-202. PubMed ID: 2648256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insertion of an Alu SINE in the human homologue of the Mlvi-2 locus.
    Economou-Pachnis A; Tsichlis PN
    Nucleic Acids Res; 1985 Dec; 13(23):8379-87. PubMed ID: 3001638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recombinations between Alu repeat sequences that result in partial deletions within the C1 inhibitor gene.
    Ariga T; Carter PE; Davis AE
    Genomics; 1990 Dec; 8(4):607-13. PubMed ID: 2276734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A sex chromosome rearrangement in a human XX male caused by Alu-Alu recombination.
    Rouyer F; Simmler MC; Page DC; Weissenbach J
    Cell; 1987 Nov; 51(3):417-25. PubMed ID: 2822256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nature of recombination involved in excision and rearrangement of human repetitive DNA.
    Kiyama R; Okumura K; Matsui H; Bruns GA; Kanda N; Oishi M
    J Mol Biol; 1987 Dec; 198(4):589-98. PubMed ID: 3502700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. BCR gene recombines with genomically distinct sites on band 11Q13 in complex BCR-ABL translocations of chronic myeloid leukemia.
    Morris C; Jeffs A; Smith T; McDonald M; Board P; Kennedy M; Fitzgerald P
    Oncogene; 1996 Feb; 12(3):677-85. PubMed ID: 8637725
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Serial Alu sequence transposition interrupting a human B creatine kinase pseudogene.
    Ma TS; Ifegwu J; Watts L; Siciliano MJ; Roberts R; Perryman MB
    Genomics; 1991 Jun; 10(2):390-9. PubMed ID: 1676982
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromosomal stabilisation by a subtelomeric rearrangement involving two closely related Alu elements.
    Flint J; Rochette J; Craddock CF; Dodé C; Vignes B; Horsley SW; Kearney L; Buckle VJ; Ayyub H; Higgs DR
    Hum Mol Genet; 1996 Aug; 5(8):1163-9. PubMed ID: 8842736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The generation of DNA probes to chromosome 11q23 by Alu PCR on small numbers of flow-sorted 22q- derivative chromosomes.
    Cotter FE; Das S; Douek E; Carter NP; Young BD
    Genomics; 1991 Mar; 9(3):473-80. PubMed ID: 2032719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unusual clustering of Alu repeats within the 5'-flanking region of the human lysozyme gene.
    Riccio ML; Rossolini GM
    DNA Seq; 1993; 4(2):129-34. PubMed ID: 8173077
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation and characterization of a DNA fragment containing various kinds of repetitive sequences located on human chromosome 21.
    Yao R; Patterson D; Onodera K
    Jpn J Hum Genet; 1993 Sep; 38(3):243-55. PubMed ID: 8260717
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Competitive and cooperative functioning of the anterior and posterior promoter elements of an Alu family repeat.
    Perez-Stable C; Shen CK
    Mol Cell Biol; 1986 Jun; 6(6):2041-52. PubMed ID: 3023916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Binding specificity of human nuclear protein interacting with the Alu-family DNA repeats.
    Chesnokov I; Bozhkov V; Popov B; Tomilin N
    Biochem Biophys Res Commun; 1991 Jul; 178(2):613-9. PubMed ID: 1859421
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.