These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 14617082)
1. Insertion of an En/Spm-related transposable element into a floral homeotic gene DUPLICATED causes a double flower phenotype in the Japanese morning glory. Nitasaka E Plant J; 2003 Nov; 36(4):522-31. PubMed ID: 14617082 [TBL] [Abstract][Full Text] [Related]
2. The FEATHERED gene is required for polarity establishment in lateral organs especially flowers of the Japanese morning glory (I pomoea nil ). Iwasaki M; Nitasaka E Plant Mol Biol; 2006 Dec; 62(6):913-25. PubMed ID: 16972166 [TBL] [Abstract][Full Text] [Related]
3. Characterization of Tpn1 family in the Japanese morning glory: En/Spm-related transposable elements capturing host genes. Kawasaki S; Nitasaka E Plant Cell Physiol; 2004 Jul; 45(7):933-44. PubMed ID: 15295077 [TBL] [Abstract][Full Text] [Related]
4. Toward the analysis of the petunia MADS box gene family by reverse and forward transposon insertion mutagenesis approaches: B, C, and D floral organ identity functions require SEPALLATA-like MADS box genes in petunia. Vandenbussche M; Zethof J; Souer E; Koes R; Tornielli GB; Pezzotti M; Ferrario S; Angenent GC; Gerats T Plant Cell; 2003 Nov; 15(11):2680-93. PubMed ID: 14576291 [TBL] [Abstract][Full Text] [Related]
5. Capture of a genomic HMG domain sequence by the En/Spm-related transposable element Tpn1 in the Japanese morning glory. Takahashi S; Inagaki Y; Satoh H; Hoshino A; Iida S Mol Gen Genet; 1999 Apr; 261(3):447-51. PubMed ID: 10323224 [TBL] [Abstract][Full Text] [Related]
6. Genetics and epigenetics in flower pigmentation associated with transposable elements in morning glories. Iida S; Morita Y; Choi JD; Park KI; Hoshino A Adv Biophys; 2004; 38():141-59. PubMed ID: 15493332 [TBL] [Abstract][Full Text] [Related]
7. Isolation of a Suppressor-mutator/Enhancer-like transposable element, Tpn1, from Japanese morning glory bearing variegated flowers. Inagaki Y; Hisatomi Y; Suzuki T; Kasahara K; Iida S Plant Cell; 1994 Mar; 6(3):375-83. PubMed ID: 8180498 [TBL] [Abstract][Full Text] [Related]
8. Identification of r mutations conferring white flowers in the Japanese morning glory (Ipomoea nil). Hoshino A; Park KI; Iida S J Plant Res; 2009 Mar; 122(2):215-22. PubMed ID: 19085046 [TBL] [Abstract][Full Text] [Related]
9. Isolation and characterization of the C-class MADS-box gene involved in the formation of double flowers in Japanese gentian. Nakatsuka T; Saito M; Yamada E; Fujita K; Yamagishi N; Yoshikawa N; Nishihara M BMC Plant Biol; 2015 Jul; 15():182. PubMed ID: 26183329 [TBL] [Abstract][Full Text] [Related]
10. Structural analysis of Tpn1, a transposable element isolated from Japanese morning glory bearing variegated flowers. Hoshino A; Inagaki Y; Iida S Mol Gen Genet; 1995 Apr; 247(1):114-7. PubMed ID: 7715598 [TBL] [Abstract][Full Text] [Related]
12. PLENA and FARINELLI: redundancy and regulatory interactions between two Antirrhinum MADS-box factors controlling flower development. Davies B; Motte P; Keck E; Saedler H; Sommer H; Schwarz-Sommer Z EMBO J; 1999 Jul; 18(14):4023-34. PubMed ID: 10406807 [TBL] [Abstract][Full Text] [Related]
13. The transposon Tip100 from the common morning glory is an autonomous element that can transpose in tobacco plants. Ishikawa N; Johzuka-Hisatomi Y; Sugita K; Ebinuma H; Iida S Mol Genet Genomics; 2002 Jan; 266(5):732-9. PubMed ID: 11810246 [TBL] [Abstract][Full Text] [Related]
14. Conservation of class C function of floral organ development during 300 million years of evolution from gymnosperms to angiosperms. Zhang P; Tan HT; Pwee KH; Kumar PP Plant J; 2004 Feb; 37(4):566-77. PubMed ID: 14756763 [TBL] [Abstract][Full Text] [Related]
15. Japanese morning glory dusky mutants displaying reddish-brown or purplish-gray flowers are deficient in a novel glycosylation enzyme for anthocyanin biosynthesis, UDP-glucose:anthocyanidin 3-O-glucoside-2''-O-glucosyltransferase, due to 4-bp insertions in the gene. Morita Y; Hoshino A; Kikuchi Y; Okuhara H; Ono E; Tanaka Y; Fukui Y; Saito N; Nitasaka E; Noguchi H; Iida S Plant J; 2005 May; 42(3):353-63. PubMed ID: 15842621 [TBL] [Abstract][Full Text] [Related]
16. Ectopic expression of carpel-specific MADS box genes from lily and lisianthus causes similar homeotic conversion of sepal and petal in Arabidopsis. Tzeng TY; Chen HY; Yang CH Plant Physiol; 2002 Dec; 130(4):1827-36. PubMed ID: 12481066 [TBL] [Abstract][Full Text] [Related]
17. Heterotopic expression of class B floral homeotic genes supports a modified ABC model for tulip (Tulipa gesneriana). Kanno A; Saeki H; Kameya T; Saedler H; Theissen G Plant Mol Biol; 2003 Jul; 52(4):831-41. PubMed ID: 13677470 [TBL] [Abstract][Full Text] [Related]
18. The LAMB1 gene from the clubmoss, Lycopodium annotinum, is a divergent MADS-box gene, expressed specifically in sporogenic structures. Svensson ME; Johannesson H; Engström P Gene; 2000 Jul; 253(1):31-43. PubMed ID: 10925200 [TBL] [Abstract][Full Text] [Related]
19. Proliferating Floral Organs (Pfo), a Lotus japonicus gene required for specifying floral meristem determinacy and organ identity, encodes an F-box protein. Zhang S; Sandal N; Polowick PL; Stiller J; Stougaard J; Fobert PR Plant J; 2003 Feb; 33(4):607-19. PubMed ID: 12609036 [TBL] [Abstract][Full Text] [Related]
20. Complementary floral homeotic phenotypes result from opposite orientations of a transposon at the plena locus of Antirrhinum. Bradley D; Carpenter R; Sommer H; Hartley N; Coen E Cell; 1993 Jan; 72(1):85-95. PubMed ID: 8093684 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]