These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 14617082)
21. Evolution in action: following function in duplicated floral homeotic genes. Causier B; Castillo R; Zhou J; Ingram R; Xue Y; Schwarz-Sommer Z; Davies B Curr Biol; 2005 Aug; 15(16):1508-12. PubMed ID: 16111944 [TBL] [Abstract][Full Text] [Related]
22. Ectopic expression of LLAG1, an AGAMOUS homologue from lily (Lilium longiflorum Thunb.) causes floral homeotic modifications in Arabidopsis. Benedito VA; Visser PB; van Tuyl JM; Angenent GC; de Vries SC; Krens FA J Exp Bot; 2004 Jun; 55(401):1391-9. PubMed ID: 15155783 [TBL] [Abstract][Full Text] [Related]
23. Flower development in carrot CMS plants: mitochondria affect the expression of MADS box genes homologous to GLOBOSA and DEFICIENS. Linke B; Nothnagel T; Börner T Plant J; 2003 Apr; 34(1):27-37. PubMed ID: 12662306 [TBL] [Abstract][Full Text] [Related]
24. Isolation of cDNAs for R2R3-MYB, bHLH and WDR transcriptional regulators and identification of c and ca mutations conferring white flowers in the Japanese morning glory. Morita Y; Saitoh M; Hoshino A; Nitasaka E; Iida S Plant Cell Physiol; 2006 Apr; 47(4):457-70. PubMed ID: 16446312 [TBL] [Abstract][Full Text] [Related]
25. An active hAT transposable element causing bud mutation of carnation by insertion into the flavonoid 3'-hydroxylase gene. Momose M; Nakayama M; Itoh Y; Umemoto N; Toguri T; Ozeki Y Mol Genet Genomics; 2013 Apr; 288(3-4):175-84. PubMed ID: 23543146 [TBL] [Abstract][Full Text] [Related]
27. Heterotopic expression of B-class floral homeotic genes PISTILLATA/GLOBOSA supports a modified model for crocus (Crocus sativus L.) flower formation. Kalivas A; Pasentsis K; Polidoros AN; Tsaftaris AS DNA Seq; 2007 Apr; 18(2):120-30. PubMed ID: 17364823 [TBL] [Abstract][Full Text] [Related]
28. The MADS box gene FBP2 is required for SEPALLATA function in petunia. Ferrario S; Immink RG; Shchennikova A; Busscher-Lange J; Angenent GC Plant Cell; 2003 Apr; 15(4):914-25. PubMed ID: 12671087 [TBL] [Abstract][Full Text] [Related]
29. The modified ABC model explains the development of the petaloid perianth of Agapanthus praecox ssp. orientalis (Agapanthaceae) flowers. Nakamura T; Fukuda T; Nakano M; Hasebe M; Kameya T; Kanno A Plant Mol Biol; 2005 Jun; 58(3):435-45. PubMed ID: 16021405 [TBL] [Abstract][Full Text] [Related]
30. The Arabidopsis MADS-box gene AGL3 is widely expressed and encodes a sequence-specific DNA-binding protein. Huang H; Tudor M; Weiss CA; Hu Y; Ma H Plant Mol Biol; 1995 Jun; 28(3):549-67. PubMed ID: 7632923 [TBL] [Abstract][Full Text] [Related]
31. Functional analysis of three lily (Lilium longiflorum) APETALA1-like MADS box genes in regulating floral transition and formation. Chen MK; Lin IC; Yang CH Plant Cell Physiol; 2008 May; 49(5):704-17. PubMed ID: 18367516 [TBL] [Abstract][Full Text] [Related]
32. The molecular basis of incomplete dominance at the A locus of CHS-D in the common morning glory, Ipomoea purpurea. Johzuka-Hisatomi Y; Noguchi H; Iida S J Plant Res; 2011 Mar; 124(2):299-304. PubMed ID: 20680382 [TBL] [Abstract][Full Text] [Related]
33. Spontaneous mutations of the flavonoid 3'-hydroxylase gene conferring reddish flowers in the three morning glory species. Hoshino A; Morita Y; Choi JD; Saito N; Toki K; Tanaka Y; Iida S Plant Cell Physiol; 2003 Oct; 44(10):990-1001. PubMed ID: 14581624 [TBL] [Abstract][Full Text] [Related]
35. Ectopic expression of the petunia MADS box gene UNSHAVEN accelerates flowering and confers leaf-like characteristics to floral organs in a dominant-negative manner. Ferrario S; Busscher J; Franken J; Gerats T; Vandenbussche M; Angenent GC; Immink RG Plant Cell; 2004 Jun; 16(6):1490-505. PubMed ID: 15155884 [TBL] [Abstract][Full Text] [Related]
36. Differential expression of two MADS box genes in wild-type and mutant petunia flowers. Angenent GC; Busscher M; Franken J; Mol JN; van Tunen AJ Plant Cell; 1992 Aug; 4(8):983-93. PubMed ID: 1356537 [TBL] [Abstract][Full Text] [Related]
37. An intragenic tandem duplication in a transcriptional regulatory gene for anthocyanin biosynthesis confers pale-colored flowers and seeds with fine spots in Ipomoea tricolor. Park KI; Choi JD; Hoshino A; Morita Y; Iida S Plant J; 2004 Jun; 38(5):840-9. PubMed ID: 15144384 [TBL] [Abstract][Full Text] [Related]
38. Cloning of a MADS box gene (GhMADS3) from cotton and analysis of its homeotic role in transgenic tobacco. Guo Y; Zhu Q; Zheng S; Li M J Genet Genomics; 2007 Jun; 34(6):527-35. PubMed ID: 17601612 [TBL] [Abstract][Full Text] [Related]
39. Four orchid (Oncidium Gower Ramsey) AP1/AGL9-like MADS box genes show novel expression patterns and cause different effects on floral transition and formation in Arabidopsis thaliana. Chang YY; Chiu YF; Wu JW; Yang CH Plant Cell Physiol; 2009 Aug; 50(8):1425-38. PubMed ID: 19541596 [TBL] [Abstract][Full Text] [Related]
40. Characterization of a novel Na+/H+ antiporter gene InNHX2 and comparison of InNHX2 with InNHX1, which is responsible for blue flower coloration by increasing the vacuolar pH in the Japanese morning glory. Ohnishi M; Fukada-Tanaka S; Hoshino A; Takada J; Inagaki Y; Iida S Plant Cell Physiol; 2005 Feb; 46(2):259-67. PubMed ID: 15695437 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]