These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 14617261)

  • 1. Determination of adipose tissue blood flow with local 133Xe clearance. Evaluation of a new labelling technique.
    Simonsen L; Enevoldsen LH; Bülow J
    Clin Physiol Funct Imaging; 2003 Nov; 23(6):320-3. PubMed ID: 14617261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tissue/blood partition coefficients for xenon in various adipose tissue depots in man.
    Bülow J; Jelnes R; Astrup A; Madsen J; Vilmann P
    Scand J Clin Lab Invest; 1987 Feb; 47(1):1-3. PubMed ID: 3576104
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compensation for geometric changes during monitoring of 133Xe washout from subcutaneous adipose tissue.
    Bülow J; Madsen J
    Scand J Clin Lab Invest; 1975 Nov; 35(7):641-4. PubMed ID: 1209159
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of the microdialysis ethanol technique for monitoring of subcutaneous adipose tissue blood flow in humans.
    Felländer G; Linde B; Bolinder J
    Int J Obes Relat Metab Disord; 1996 Mar; 20(3):220-6. PubMed ID: 8653142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The double isotope technique for in vivo determination of the tissue-to-blood partition coefficient for xenon in human subcutaneous adipose tissue--an evaluation.
    Jelnes R; Astrup A; Bülow J
    Scand J Clin Lab Invest; 1985 Oct; 45(6):565-8. PubMed ID: 4070957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo human lipolytic activity in preperitoneal and subdivisions of subcutaneous abdominal adipose tissue.
    Enevoldsen LH; Simonsen L; Stallknecht B; Galbo H; Bülow J
    Am J Physiol Endocrinol Metab; 2001 Nov; 281(5):E1110-4. PubMed ID: 11595670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The regulation of subcutaneous adipose tissue blood flow in the ischaemic forefoot during 24 hours. Studies using the 133-xenon wash-out technique continuously over 24 hours.
    Jelnes R
    Dan Med Bull; 1988 Aug; 35(4):303-15. PubMed ID: 3048919
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experiences of the 14C-ethanol technique for blood flow measurements in human subcutaneous adipose tissue.
    Børsheim E; Jansson PA
    Life Sci; 1998; 62(11):967-72. PubMed ID: 9515553
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lack of effect of peripheral nervous blockade on nocturnal fluctuations in lower-leg subcutaneous blood flow in man.
    Sindrup JH; Petersen LJ; Kastrup J; Wroblewski H; Kristensen JK
    Clin Sci (Lond); 1993 Mar; 84(3):297-304. PubMed ID: 8384952
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lactate release from the subcutaneous tissue in lean and obese men.
    Jansson PA; Larsson A; Smith U; Lönnroth P
    J Clin Invest; 1994 Jan; 93(1):240-6. PubMed ID: 8282793
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subcutaneous adipose tissue blood flow in the abdominal and femoral regions in obese women: effect of fasting.
    Engfeldt P; Linde B
    Int J Obes Relat Metab Disord; 1992 Nov; 16(11):875-9. PubMed ID: 1337342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement of human abdominal and femoral intravascular adipose tissue blood flow using percutaneous Doppler ultrasound.
    Lempesis IG; Goossens GH; Manolopoulos KN
    Adipocyte; 2021 Dec; 10(1):119-123. PubMed ID: 33591224
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A method for determination of blood flow with 133Xe in human nasal mucosa.
    Bende M; Flisberg K; Larsson I; Ohlin P; Olsson P
    Acta Otolaryngol; 1983; 96(3-4):277-85. PubMed ID: 6356775
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glucose uptake and perfusion in subcutaneous and visceral adipose tissue during insulin stimulation in nonobese and obese humans.
    Virtanen KA; Lönnroth P; Parkkola R; Peltoniemi P; Asola M; Viljanen T; Tolvanen T; Knuuti J; Rönnemaa T; Huupponen R; Nuutila P
    J Clin Endocrinol Metab; 2002 Aug; 87(8):3902-10. PubMed ID: 12161530
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subcutaneous adipose tissue blood flow varies between superior and inferior levels of the anterior abdominal wall.
    Ardilouze JL; Karpe F; Currie JM; Frayn KN; Fielding BA
    Int J Obes Relat Metab Disord; 2004 Feb; 28(2):228-33. PubMed ID: 14647178
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fatty tissue visualization 18 hours after 133Xe lung ventilation study.
    Bekier AM
    Nuklearmedizin; 1993 Oct; 32(5):264-5. PubMed ID: 8233846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Noninvasive rCBF determination by 133XE-inhalation with the gamma camera and functional imaging of wash-in and wash-out. A new combined approach for rCBE measurements in patients with cerebrovascular disease.
    Sochor H; Ogris E; Bruck J; Tschabitscher H
    Eur J Nucl Med; 1981; 6(11):481-6. PubMed ID: 7035177
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Subcutaneous adipose tissue blood flow in the forefoot during 24 hours. Labeling pattern and reproducibility.
    Jelnes R; Bülow J; Tønnesen KH
    Scand J Clin Lab Invest; 1987 May; 47(3):223-7. PubMed ID: 3589486
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An intravenous 133Xe wash-out technique for the estimation of regional distribution of cerebral blood flow.
    Kuikka JT; Ahonen AK
    Nuklearmedizin; 1978 Jul; 17(3):126-9. PubMed ID: 360173
    [No Abstract]   [Full Text] [Related]  

  • 20. Rates of skeletal muscle and adipose tissue glycerol release in nonobese and obese subjects.
    Bolinder J; Kerckhoffs DA; Moberg E; Hagström-Toft E; Arner P
    Diabetes; 2000 May; 49(5):797-802. PubMed ID: 10905489
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.