BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 14617527)

  • 1. Exercise preserves endothelium-dependent relaxation in coronary arteries of hypercholesterolemic male pigs.
    Thompson MA; Henderson KK; Woodman CR; Turk JR; Rush JW; Price E; Laughlin MH
    J Appl Physiol (1985); 2004 Mar; 96(3):1114-26. PubMed ID: 14617527
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exercise attenuates the effects of hypercholesterolemia on endothelium-dependent relaxation in coronary arteries from adult female pigs.
    Woodman CR; Turk JR; Rush JW; Laughlin MH
    J Appl Physiol (1985); 2004 Mar; 96(3):1105-13. PubMed ID: 12959954
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endurance exercise training improves endothelium-dependent relaxation in brachial arteries from hypercholesterolemic male pigs.
    Woodman CR; Thompson MA; Turk JR; Laughlin MH
    J Appl Physiol (1985); 2005 Oct; 99(4):1412-21. PubMed ID: 15976363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exercise training preserves endothelium-dependent relaxation in brachial arteries from hyperlipidemic pigs.
    Woodman CR; Turk JR; Williams DP; Laughlin MH
    J Appl Physiol (1985); 2003 May; 94(5):2017-26. PubMed ID: 12679352
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exercise training improves femoral artery blood flow responses to endothelium-dependent dilators in hypercholesterolemic pigs.
    Woodman CR; Ingram D; Bonagura J; Laughlin MH
    Am J Physiol Heart Circ Physiol; 2006 Jun; 290(6):H2362-8. PubMed ID: 16399863
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Endothelial function in coronary arterioles from pigs with early-stage coronary disease induced by high-fat, high-cholesterol diet: effect of exercise.
    Henderson KK; Turk JR; Rush JW; Laughlin MH
    J Appl Physiol (1985); 2004 Sep; 97(3):1159-68. PubMed ID: 15208294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vasodilator responses of coronary resistance arteries of exercise-trained pigs.
    Muller JM; Myers PR; Laughlin MH
    Circulation; 1994 May; 89(5):2308-14. PubMed ID: 8181157
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exercise training restores coronary arteriolar dilation to NOS activation distal to coronary artery occlusion: role of hydrogen peroxide.
    Thengchaisri N; Shipley R; Ren Y; Parker J; Kuo L
    Arterioscler Thromb Vasc Biol; 2007 Apr; 27(4):791-8. PubMed ID: 17234725
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exercise training improves aortic endothelium-dependent vasorelaxation and determinants of nitric oxide bioavailability in spontaneously hypertensive rats.
    Graham DA; Rush JW
    J Appl Physiol (1985); 2004 Jun; 96(6):2088-96. PubMed ID: 14752124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chronic nitric oxide synthase inhibition blunts endothelium-dependent function of conduit coronary arteries, not arterioles.
    Ingram DG; Newcomer SC; Price EM; Eklund KE; McAllister RM; Laughlin MH
    Am J Physiol Heart Circ Physiol; 2007 Jun; 292(6):H2798-808. PubMed ID: 17259441
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exercise training reverses age-related decrements in endothelium-dependent dilation in skeletal muscle feed arteries.
    Trott DW; Gunduz F; Laughlin MH; Woodman CR
    J Appl Physiol (1985); 2009 Jun; 106(6):1925-34. PubMed ID: 19299569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chronic exercise training improves ACh-induced vasorelaxation in pulmonary arteries of pigs.
    Johnson LR; Parker JL; Laughlin MH
    J Appl Physiol (1985); 2000 Feb; 88(2):443-51. PubMed ID: 10658009
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of exercise training and hypercholesterolemia on adenosine activation of voltage-dependent K+ channels in coronary arterioles.
    Heaps CL; Jeffery EC; Laine GA; Price EM; Bowles DK
    J Appl Physiol (1985); 2008 Dec; 105(6):1761-71. PubMed ID: 18832757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exercise training enhances vasodilation responses to vascular endothelial growth factor in porcine coronary arterioles exposed to chronic coronary occlusion.
    Fogarty JA; Muller-Delp JM; Delp MD; Mattox ML; Laughlin MH; Parker JL
    Circulation; 2004 Feb; 109(5):664-70. PubMed ID: 14769688
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Short-term training enhances endothelium-dependent dilation of coronary arteries, not arterioles.
    Laughlin MH; Rubin LJ; Rush JW; Price EM; Schrage WG; Woodman CR
    J Appl Physiol (1985); 2003 Jan; 94(1):234-44. PubMed ID: 12391095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of aprotinin on endothelium-dependent relaxation of large coronary arteries.
    Fischer JH; Steinhoff M
    Eur J Cardiothorac Surg; 2005 Dec; 28(6):801-4. PubMed ID: 16275008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Perivascular fat alters reactivity of coronary artery: effects of diet and exercise.
    Reifenberger MS; Turk JR; Newcomer SC; Booth FW; Laughlin MH
    Med Sci Sports Exerc; 2007 Dec; 39(12):2125-34. PubMed ID: 18046183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exercise training improves endothelium-mediated vasorelaxation after chronic coronary occlusion.
    Griffin KL; Laughlin MH; Parker JL
    J Appl Physiol (1985); 1999 Nov; 87(5):1948-56. PubMed ID: 10562641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impaired endothelium-dependent relaxation to aggregating platelets and related vasoactive substances in porcine coronary arteries in hypercholesterolemia and atherosclerosis.
    Shimokawa H; Vanhoutte PM
    Circ Res; 1989 May; 64(5):900-14. PubMed ID: 2495869
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Endothelium-mediated relaxation of porcine collateral-dependent arterioles is improved by exercise training.
    Griffin KL; Woodman CR; Price EM; Laughlin MH; Parker JL
    Circulation; 2001 Sep; 104(12):1393-8. PubMed ID: 11560855
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.