These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 14618434)

  • 1. Preliminary evaluation of a new pediatric air displacement plethysmograph for body composition assessment in infants.
    Yao M; Nommsen-Rivers L; Dewey K; Urlando A
    Acta Diabetol; 2003 Oct; 40 Suppl 1():S55-8. PubMed ID: 14618434
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Validation of a new pediatric air-displacement plethysmograph for assessing body composition in infants.
    Ma G; Yao M; Liu Y; Lin A; Zou H; Urlando A; Wong WW; Nommsen-Rivers L; Dewey KG
    Am J Clin Nutr; 2004 Apr; 79(4):653-60. PubMed ID: 15051611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interdevice variability in percent fat estimates using the BOD POD.
    Ball SD
    Eur J Clin Nutr; 2005 Sep; 59(9):996-1001. PubMed ID: 15970945
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Body fat measurement in adolescent athletes: multicompartment molecular model comparison.
    Silva AM; Minderico CS; Teixeira PJ; Pietrobelli A; Sardinha LB
    Eur J Clin Nutr; 2006 Aug; 60(8):955-64. PubMed ID: 16523205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of air displacement for assessing body composition of collegiate wrestlers.
    Utter AC; Goss FL; Swan PD; Harris GS; Robertson RJ; Trone GA
    Med Sci Sports Exerc; 2003 Mar; 35(3):500-5. PubMed ID: 12618582
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Statistical validation of air-displacement plethysmography for body composition assessment in children.
    Ittenbach RF; Buison AM; Stallings VA; Zemel BS
    Ann Hum Biol; 2006; 33(2):187-201. PubMed ID: 16684692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New body fat prediction equations for severely obese patients.
    Horie LM; Barbosa-Silva MC; Torrinhas RS; de Mello MT; Cecconello I; Waitzberg DL
    Clin Nutr; 2008 Jun; 27(3):350-6. PubMed ID: 18501481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of a new pediatric air-displacement plethysmograph for body-composition assessment by means of chemical analysis of bovine tissue phantoms.
    Sainz RD; Urlando A
    Am J Clin Nutr; 2003 Feb; 77(2):364-70. PubMed ID: 12540395
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Body composition of obese subjects by air displacement plethysmography: The influence of hydration.
    Le Carvennec M; Fagour C; Adenis-Lamarre E; Perlemoine C; Gin H; Rigalleau V
    Obesity (Silver Spring); 2007 Jan; 15(1):78-84. PubMed ID: 17228034
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of clothing and body mass index affects validity of air-displacement plethysmography in adults.
    Shafer KJ; Siders WA; Johnson LK; Lukaski HC
    Nutrition; 2008 Feb; 24(2):148-54. PubMed ID: 18068951
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Body-composition assessment in infancy: air-displacement plethysmography compared with a reference 4-compartment model.
    Ellis KJ; Yao M; Shypailo RJ; Urlando A; Wong WW; Heird WC
    Am J Clin Nutr; 2007 Jan; 85(1):90-5. PubMed ID: 17209182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of air-displacement plethysmography for body composition assessment in preterm infants.
    Roggero P; Giannì ML; Amato O; Piemontese P; Morniroli D; Wong WW; Mosca F
    Pediatr Res; 2012 Sep; 72(3):316-20. PubMed ID: 22669294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new air displacement method for the determination of human body composition.
    Dempster P; Aitkens S
    Med Sci Sports Exerc; 1995 Dec; 27(12):1692-7. PubMed ID: 8614327
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of factors determining the precision of body composition measurements by air displacement plethysmography.
    Collins AL; McCarthy HD
    Eur J Clin Nutr; 2003 Jun; 57(6):770-6. PubMed ID: 12792661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Feasibility of air plethysmography (BOD POD) in morbid obesity: a pilot study.
    Petroni ML; Bertoli S; Maggioni M; Morini P; Battezzati A; Tagliaferri MA; Liuzzi A; Testolin G
    Acta Diabetol; 2003 Oct; 40 Suppl 1():S59-62. PubMed ID: 14618435
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methodological agreement between two-compartment body-composition methods in children.
    Buison AM; Ittenbach RF; Stallings VA; Zemel BS
    Am J Hum Biol; 2006; 18(4):470-80. PubMed ID: 16788892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Body fat measurement by bioelectrical impedance and air displacement plethysmography: a cross-validation study to design bioelectrical impedance equations in Mexican adults.
    Macias N; Alemán-Mateo H; Esparza-Romero J; Valencia ME
    Nutr J; 2007 Aug; 6():18. PubMed ID: 17697388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gender- and gestational age-specific body fat percentage at birth.
    Hawkes CP; Hourihane JO; Kenny LC; Irvine AD; Kiely M; Murray DM
    Pediatrics; 2011 Sep; 128(3):e645-51. PubMed ID: 21824882
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in thoracic gas volume with air-displacement plethysmography after a weight loss program in overweight and obese women.
    Minderico CS; Silva AM; Fields DA; Branco TL; Martins SS; Teixeira PJ; Sardinha LB
    Eur J Clin Nutr; 2008 Mar; 62(3):444-50. PubMed ID: 17392701
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of air displacement plethysmograph and bioelectrical impedance for assessing body composition changes during weight loss in Japanese women.
    Miyatake N; Takenami S; Kawasaki Y; Fujii M
    Diabetes Obes Metab; 2005 May; 7(3):268-72. PubMed ID: 15811144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.