BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 14618701)

  • 1. The measurement of the drag characteristics of tin-free self-polishing co-polymers and fouling release coatings using a rotor apparatus.
    Candries M; Atlar M; Mesbahi E; Pazouki K
    Biofouling; 2003 Apr; 19 Suppl():27-36. PubMed ID: 14618701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of hydrodynamic drag on experimental fouling-release surfaces, using rotating disks.
    Holm ER; Schultz MP; Haslbeck EG; Talbott WJ; Field AJ
    Biofouling; 2004; 20(4-5):219-26. PubMed ID: 15621643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental study of drag resistance using a laboratory scale rotary set-up.
    Weinell CE; Olsen KN; Christoffersen MW; Kiil S
    Biofouling; 2003 Apr; 19 Suppl():45-51. PubMed ID: 14618703
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An experimental investigation of the frictional drag characteristics of nanostructured and fluorinated fouling-release coatings using an axisymmetric body.
    Atlar M; Unal B; Unal UO; Politis G; Martinelli E; Galli G; Davies C; Williams D
    Biofouling; 2013; 29(1):39-52. PubMed ID: 23194395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An experimental investigation into the surface and hydrodynamic characteristics of marine coatings with mimicked hull roughness ranges.
    Yeginbayeva IA; Atlar M
    Biofouling; 2018 Oct; 34(9):1001-1019. PubMed ID: 30537869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of copper release rates from antifouling paint under laboratory and in situ conditions: implications for loading estimation to marine water bodies.
    Valkirs AO; Seligman PF; Haslbeck E; Caso JS
    Mar Pollut Bull; 2003 Jun; 46(6):763-79. PubMed ID: 12787585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of coating roughness and biofouling on ship resistance and powering.
    Schultz MP
    Biofouling; 2007; 23(5-6):331-41. PubMed ID: 17852068
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elastomeric fluorinated polyurethane coatings for nontoxic fouling control.
    Brady RF; Aronson CL
    Biofouling; 2003 Apr; 19 Suppl():59-62. PubMed ID: 14618705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Environmentally benign sol-gel antifouling and foul-releasing coatings.
    Detty MR; Ciriminna R; Bright FV; Pagliaro M
    Acc Chem Res; 2014 Feb; 47(2):678-87. PubMed ID: 24397288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of diatomaceous biofilms on the frictional drag of fouling-release coatings.
    Schultz MP; Walker JM; Steppe CN; Flack KA
    Biofouling; 2015; 31(9-10):759-73. PubMed ID: 26652667
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The ship hull fouling penalty.
    Townsin RL
    Biofouling; 2003 Apr; 19 Suppl():9-15. PubMed ID: 14618699
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An investigation into the effects of marine biofilm on the roughness and drag characteristics of surfaces coated with different sized cuprous oxide (Cu
    Li C; Atlar M; Haroutunian M; Norman R; Anderson C
    Biofouling; 2019 Jan; 35(1):15-33. PubMed ID: 30712376
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biodegradation-based polymer surface erosion and surface renewal for foul-release at low ship speeds.
    Yu J
    Biofouling; 2003 Apr; 19 Suppl():83-90. PubMed ID: 14618708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three models to relate detachment of low form fouling at laboratory and ship scale.
    Schultz MP; Finlay JA; Callow ME; Callow JA
    Biofouling; 2003 Apr; 19 Suppl():17-26. PubMed ID: 14618700
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of 'in-service' conditions - mimicked hull roughness ranges and biofilms - on the surface and the hydrodynamic characteristics of foul-release type coatings.
    Yeginbayeva IA; Atlar M; Turkmen S; Chen H
    Biofouling; 2020 Oct; 36(9):1074-1089. PubMed ID: 33291985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silicone foul release coatings: effect of the interaction of oil and coating functionalities on the magnitude of macrofouling attachment strengths.
    Stein J; Truby K; Wood CD; Stein J; Gardner M; Swain G; Kavanagh C; Kovach B; Schultz M; Wiebe D; Holm E; Montemarano J; Wendt D; Smith C; Meyer A
    Biofouling; 2003 Apr; 19 Suppl():71-82. PubMed ID: 14618707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescence microscopy techniques for quantitative evaluation of organic biocide distribution in antifouling paint coatings: application to model antifouling coatings.
    Goodes LR; Dennington SP; Schuppe H; Wharton JA; Bakker M; Klijnstra JW; Stokes KR
    Biofouling; 2012; 28(6):613-25. PubMed ID: 22715934
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative methods for evaluating optical and frictional properties of cationic polymers.
    Wu W; Alkema J; Shay GD; Basset DR
    J Cosmet Sci; 2001; 52(1):51-65. PubMed ID: 11382843
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of hydrodynamic stress on the frictional drag of biofouling communities.
    Hunsucker JT; Hunsucker KZ; Gardner H; Swain G
    Biofouling; 2016 Nov; 32(10):1209-1221. PubMed ID: 27744722
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface roughness and gloss of dental materials as a function of force and polishing time in vitro.
    Heintze SD; Forjanic M; Rousson V
    Dent Mater; 2006 Feb; 22(2):146-65. PubMed ID: 16084582
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.