These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 14618708)

  • 1. Biodegradation-based polymer surface erosion and surface renewal for foul-release at low ship speeds.
    Yu J
    Biofouling; 2003 Apr; 19 Suppl():83-90. PubMed ID: 14618708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three models to relate detachment of low form fouling at laboratory and ship scale.
    Schultz MP; Finlay JA; Callow ME; Callow JA
    Biofouling; 2003 Apr; 19 Suppl():17-26. PubMed ID: 14618700
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elastomeric fluorinated polyurethane coatings for nontoxic fouling control.
    Brady RF; Aronson CL
    Biofouling; 2003 Apr; 19 Suppl():59-62. PubMed ID: 14618705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The measurement of the drag characteristics of tin-free self-polishing co-polymers and fouling release coatings using a rotor apparatus.
    Candries M; Atlar M; Mesbahi E; Pazouki K
    Biofouling; 2003 Apr; 19 Suppl():27-36. PubMed ID: 14618701
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of coating roughness and biofouling on ship resistance and powering.
    Schultz MP
    Biofouling; 2007; 23(5-6):331-41. PubMed ID: 17852068
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Environmentally benign sol-gel antifouling and foul-releasing coatings.
    Detty MR; Ciriminna R; Bright FV; Pagliaro M
    Acc Chem Res; 2014 Feb; 47(2):678-87. PubMed ID: 24397288
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Silicone foul release coatings: effect of the interaction of oil and coating functionalities on the magnitude of macrofouling attachment strengths.
    Stein J; Truby K; Wood CD; Stein J; Gardner M; Swain G; Kavanagh C; Kovach B; Schultz M; Wiebe D; Holm E; Montemarano J; Wendt D; Smith C; Meyer A
    Biofouling; 2003 Apr; 19 Suppl():71-82. PubMed ID: 14618707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of long-term mechanical grooming on large-scale test panels coated with an antifouling and a fouling-release coating.
    Hearin J; Hunsucker KZ; Swain G; Stephens A; Gardner H; Lieberman K; Harper M
    Biofouling; 2015; 31(8):625-38. PubMed ID: 26359541
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An experimental investigation into the surface and hydrodynamic characteristics of marine coatings with mimicked hull roughness ranges.
    Yeginbayeva IA; Atlar M
    Biofouling; 2018 Oct; 34(9):1001-1019. PubMed ID: 30537869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The ship hull fouling penalty.
    Townsin RL
    Biofouling; 2003 Apr; 19 Suppl():9-15. PubMed ID: 14618699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of hydrodynamic drag on experimental fouling-release surfaces, using rotating disks.
    Holm ER; Schultz MP; Haslbeck EG; Talbott WJ; Field AJ
    Biofouling; 2004; 20(4-5):219-26. PubMed ID: 15621643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement of copper release rates from antifouling paint under laboratory and in situ conditions: implications for loading estimation to marine water bodies.
    Valkirs AO; Seligman PF; Haslbeck E; Caso JS
    Mar Pollut Bull; 2003 Jun; 46(6):763-79. PubMed ID: 12787585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diatom community structure on in-service cruise ship hulls.
    Hunsucker KZ; Koka A; Lund G; Swain G
    Biofouling; 2014 Oct; 30(9):1133-40. PubMed ID: 25377486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of brushes for removal of fouling from fouling-release surfaces, using a hydraulic cleaning device.
    Holm ER; Haslbeck EG; Horinek AA
    Biofouling; 2003 Oct; 19(5):297-305. PubMed ID: 14650084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of grooming on a copper ablative coating: a six year study.
    Tribou M; Swain G
    Biofouling; 2017 Jul; 33(6):494-504. PubMed ID: 28604166
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of diatomaceous biofilms on the frictional drag of fouling-release coatings.
    Schultz MP; Walker JM; Steppe CN; Flack KA
    Biofouling; 2015; 31(9-10):759-73. PubMed ID: 26652667
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel approach to biodegradable block copolymers of epsilon-caprolactone and delta-valerolactone catalyzed by new aluminum metal complexes.
    Yang J; Jia L; Yin L; Yu J; Shi Z; Fang Q; Cao A
    Macromol Biosci; 2004 Dec; 4(12):1092-104. PubMed ID: 15586386
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of 'in-service' conditions - mimicked hull roughness ranges and biofilms - on the surface and the hydrodynamic characteristics of foul-release type coatings.
    Yeginbayeva IA; Atlar M; Turkmen S; Chen H
    Biofouling; 2020 Oct; 36(9):1074-1089. PubMed ID: 33291985
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface properties influence marine biofilm rheology, with implications for ship drag.
    Snowdon AA; Dennington SP; Longyear JE; Wharton JA; Stoodley P
    Soft Matter; 2023 May; 19(20):3675-3687. PubMed ID: 37170818
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amphiphilic triblock copolymers with PEGylated hydrocarbon structures as environmentally friendly marine antifouling and fouling-release coatings.
    Zhou Z; Calabrese DR; Taylor W; Finlay JA; Callow ME; Callow JA; Fischer D; Kramer EJ; Ober CK
    Biofouling; 2014; 30(5):589-604. PubMed ID: 24730510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.