These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 14618727)

  • 1. Wood digestion in Pselactus spadix Herbst--a weevil attacking marine timber structures.
    Oevering P; Pitman AJ; Pandey KK
    Biofouling; 2003 Apr; 19 Suppl():249-54. PubMed ID: 14618727
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biodegradation of hardwood lignocellulosics by the western poplar clearwing borer, Paranthrene robiniae (Hy. Edwards).
    Ke J; Laskar DD; Chen S
    Biomacromolecules; 2011 May; 12(5):1610-20. PubMed ID: 21405063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mode of coniferous wood decay by the white rot fungus Phanerochaete carnosa as elucidated by FTIR and ToF-SIMS.
    Mahajan S; Jeremic D; Goacher RE; Master ER
    Appl Microbiol Biotechnol; 2012 Jun; 94(5):1303-11. PubMed ID: 22290642
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterisation of the initial degradation stage of Scots pine (Pinus sylvestris L.) sapwood after attack by brown-rot fungus Coniophora puteana.
    Irbe I; Andersone I; Andersons B; Noldt G; Dizhbite T; Kurnosova N; Nuopponen M; Stewart D
    Biodegradation; 2011 Jul; 22(4):719-28. PubMed ID: 21327804
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon-thirteen cross-polarization magic angle spinning nuclear magnetic resonance and Fourier transform infrared studies of thermally modified wood exposed to brown and soft rot fungi.
    Sivonen H; Nuopponen M; Maunu SL; Sundholm F; Vuorinen T
    Appl Spectrosc; 2003 Mar; 57(3):266-73. PubMed ID: 14658617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of wood density and chemical composition by means of diffuse reflectance mid-infrared Fourier transform (DRIFT-MIR) spectroscopy.
    Nuopponen MH; Birch GM; Sykes RJ; Lee SJ; Stewart D
    J Agric Food Chem; 2006 Jan; 54(1):34-40. PubMed ID: 16390174
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of the pyrolysis behavior of lignins from different tree species.
    Wang S; Wang K; Liu Q; Gu Y; Luo Z; Cen K; Fransson T
    Biotechnol Adv; 2009; 27(5):562-7. PubMed ID: 19393737
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [FTIR studies of masson pine wood decayed by brown-rot fungi].
    Li GY; Huang AM; Qin TF; Huang LH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Aug; 30(8):2133-6. PubMed ID: 20939323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The bioconversion of mountain pine beetle-killed lodgepole pine to fuel ethanol using the organosolv process.
    Pan X; Xie D; Yu RW; Saddler JN
    Biotechnol Bioeng; 2008 Sep; 101(1):39-48. PubMed ID: 18421796
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogen bonding in lignin: a Fourier transform infrared model compound study.
    Kubo S; Kadla JF
    Biomacromolecules; 2005; 6(5):2815-21. PubMed ID: 16153123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Qualitative and quantitative changes of beech wood degraded by wood-rotting basidiomycetes monitored by Fourier transform infrared spectroscopic methods and multivariate data analysis.
    Fackler K; Schwanninger M; Gradinger C; Hinterstoisser B; Messner K
    FEMS Microbiol Lett; 2007 Jun; 271(2):162-9. PubMed ID: 17466029
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mid-infrared diffuse reflectance spectroscopic examination of charred pine wood, bark, cellulose, and lignin: implications for the quantitative determination of charcoal in soils.
    Reeves JB; McCarty GW; Rutherford DW; Wershaw RL
    Appl Spectrosc; 2008 Feb; 62(2):182-9. PubMed ID: 18284794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of FTIR spectroscopy to the characterization of archeological wood.
    Traoré M; Kaal J; Martínez Cortizas A
    Spectrochim Acta A Mol Biomol Spectrosc; 2016 Jan; 153():63-70. PubMed ID: 26291671
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellulose extraction from wood chip in an ionic liquid 1-allyl-3-methylimidazolium chloride (AmimCl).
    Wang X; Li H; Cao Y; Tang Q
    Bioresour Technol; 2011 Sep; 102(17):7959-65. PubMed ID: 21684735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization and evaluation of golpata fronds as pulping raw materials.
    Jahan MS; Chowdhury DA; Islam MK
    Bioresour Technol; 2006 Feb; 97(3):401-6. PubMed ID: 15927462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fourier transform infrared studies of heterogeneity, photodegradation, and lignin/hemicellulose ratios within hardwoods and softwoods.
    Orton CR; Parkinson DY; Evans PD; Owen NL
    Appl Spectrosc; 2004 Nov; 58(11):1265-71. PubMed ID: 15606929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An overview of the biology of the wharf borer beetle (Nacerdes melanura L., Oedemeridae) a pest of wood in marine structures.
    Pitman AJ; Jones EB; Jones MA; Oevering P
    Biofouling; 2003 Apr; 19 Suppl():239-48. PubMed ID: 14618726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FTIR and color change of the modified wood as a result of artificial light irradiation.
    Rosu D; Teaca CA; Bodirlau R; Rosu L
    J Photochem Photobiol B; 2010 Jun; 99(3):144-9. PubMed ID: 20392648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of hemicellulose, cellulose, holocellulose and lignin content using FTIR in Calycophyllum spruceanum (Benth.) K. Schum. and Guazuma crinita Lam.
    Javier-Astete R; Jimenez-Davalos J; Zolla G
    PLoS One; 2021; 16(10):e0256559. PubMed ID: 34705842
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural differences of cell walls in earlywood and latewood of
    Liszka A; Wightman R; Latowski D; Bourdon M; Krogh KBRM; Pietrzykowski M; Lyczakowski JJ
    Front Plant Sci; 2023; 14():1283093. PubMed ID: 38148867
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.