These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 14618930)

  • 1. Numerical simulation of flow in mechanical heart valves: grid resolution and the assumption of flow symmetry.
    Ge L; Jones SC; Sotiropoulos F; Healy TM; Yoganathan AP
    J Biomech Eng; 2003 Oct; 125(5):709-18. PubMed ID: 14618930
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flow in a mechanical bileaflet heart valve at laminar and near-peak systole flow rates: CFD simulations and experiments.
    Ge L; Leo HL; Sotiropoulos F; Yoganathan AP
    J Biomech Eng; 2005 Oct; 127(5):782-97. PubMed ID: 16248308
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Validation of a fluid-structure interaction model of a heart valve using the dynamic mesh method in fluent.
    Dumont K; Stijnen JM; Vierendeels J; van de Vosse FN; Verdonck PR
    Comput Methods Biomech Biomed Engin; 2004 Jun; 7(3):139-46. PubMed ID: 15512757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel computational model for the hemodynamics of bileaflet mechanical valves in the opening phase.
    Jahandardoost M; Fradet G; Mohammadi H
    Proc Inst Mech Eng H; 2015 Mar; 229(3):232-44. PubMed ID: 25833999
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A three-dimensional, time-dependent analysis of flow through a bileaflet mechanical heart valve: comparison of experimental and numerical results.
    King MJ; Corden J; David T; Fisher J
    J Biomech; 1996 May; 29(5):609-18. PubMed ID: 8707787
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical simulation of unsteady laminar flow through a tilting disk heart valve: prediction of vortex shedding.
    Huang ZJ; Merkle CL; Abdallah S; Tarbell JM
    J Biomech; 1994 Apr; 27(4):391-402. PubMed ID: 8188720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of hemodynamic forces induced by mechanical heart valves: Reynolds vs. viscous stresses.
    Ge L; Dasi LP; Sotiropoulos F; Yoganathan AP
    Ann Biomed Eng; 2008 Feb; 36(2):276-97. PubMed ID: 18049902
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional study of the effect of two leaflet opening angles on the time-dependent flow through a bileaflet mechanical heart valve.
    King MJ; David T; Fisher J
    Med Eng Phys; 1997 Apr; 19(3):235-41. PubMed ID: 9239642
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational fluid dynamics study of a protruded-hinge bileaflet mechanical heart valve.
    Wang J; Yao H; Lim CJ; Zhao Y; Yeo TJ; Hwang NH
    J Heart Valve Dis; 2001 Mar; 10(2):254-262; discussion 263. PubMed ID: 11297213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Particle image velocimetry for flow analysis in longitudinal planes across a mechanical artificial heart valve.
    Castellini P; Pinotti M; Scalise L
    Artif Organs; 2004 May; 28(5):507-13. PubMed ID: 15113347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct numerical simulation of a 2D-stented aortic heart valve at physiological flow rates.
    Dimakopoulos Y; Bogaerds AC; Anderson PD; Hulsen MA; Baaijens FP
    Comput Methods Biomech Biomed Engin; 2012; 15(11):1157-79. PubMed ID: 22185614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time-dependent analysis of leaflets in mechanical aortic bileaflet heart valves in closing phase using the finite strip method.
    Mohammadi H; Ahmadian MT; Wan WK
    Med Eng Phys; 2006 Mar; 28(2):122-33. PubMed ID: 15946890
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-resolution fluid-structure interaction simulations of flow through a bi-leaflet mechanical heart valve in an anatomic aorta.
    Borazjani I; Ge L; Sotiropoulos F
    Ann Biomed Eng; 2010 Feb; 38(2):326-44. PubMed ID: 19806458
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CFD simulation of a novel bileaflet mechanical heart valve prosthesis: an estimation of the Venturi passage formed by the leaflets.
    Yokoyama Y; Medart D; Hormes M; Schmitz C; Hamilton K; Kwant PB; Takatani S; Schmitz-Rode T; Steinseifer U
    Int J Artif Organs; 2006 Dec; 29(12):1132-9. PubMed ID: 17219353
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impulsive-motion model for computing the closing motion of mechanical heart-valve leaflets.
    Myers MR; Porter JM
    Ann Biomed Eng; 2003 Oct; 31(9):1031-9. PubMed ID: 14582606
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational Hemodynamic Investigation of Bileaflet and Trileaflet Mechanical Heart Valves.
    Kuan YH; Nguyen VT; Kabinejadian F; Leo HL
    J Heart Valve Dis; 2015 May; 24(3):393-403. PubMed ID: 26901919
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An in vivo method for measuring turbulence in mechanical prosthesis leakage jets.
    Travis BR; Christensen TD; Smerup M; Olsen MS; Hasenkam JM; Nygaard H
    J Biomech Eng; 2004 Feb; 126(1):26-35. PubMed ID: 15171126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A computational fluid-structure interaction analysis of a fiber-reinforced stentless aortic valve.
    De Hart J; Baaijens FP; Peters GW; Schreurs PJ
    J Biomech; 2003 May; 36(5):699-712. PubMed ID: 12695000
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional numeric simulation of flow through an aortic bileaflet valve in a realistic model of aortic root.
    Grigioni M; Daniele C; Del Gaudio C; Morbiducci U; Balducci A; D'Avenio G; Barbaro V
    ASAIO J; 2005; 51(3):176-83. PubMed ID: 15968945
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flow in prosthetic heart valves: state-of-the-art and future directions.
    Yoganathan AP; Chandran KB; Sotiropoulos F
    Ann Biomed Eng; 2005 Dec; 33(12):1689-94. PubMed ID: 16389514
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.