These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 1461917)

  • 21. Oxidized LDL and atherogenesis.
    Ylä-Herttuala S
    Ann N Y Acad Sci; 1999 Jun; 874():134-7. PubMed ID: 10415527
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The role of oxidized low-density lipoproteins in the pathogenesis of atherosclerosis.
    Parthasarathy S; Steinberg D; Witztum JL
    Annu Rev Med; 1992; 43():219-25. PubMed ID: 1580586
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanisms involved in the uptake and degradation of low density lipoprotein by the artery wall in vivo.
    Steinberg D; Pittman RC; Carew TE
    Ann N Y Acad Sci; 1985; 454():195-206. PubMed ID: 3907462
    [No Abstract]   [Full Text] [Related]  

  • 24. Interaction of oxidized low density lipoprotein with macrophages in atherosclerosis, and the antiatherogenicity of antioxidants.
    Aviram M
    Eur J Clin Chem Clin Biochem; 1996 Aug; 34(8):599-608. PubMed ID: 8877334
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The oxidative modification hypothesis of atherogenesis: an overview.
    Chisolm GM; Steinberg D
    Free Radic Biol Med; 2000 Jun; 28(12):1815-26. PubMed ID: 10946223
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Increased low-density lipoprotein oxidation and impaired high-density lipoprotein antioxidant defense are associated with increased macrophage homing and atherosclerosis in dyslipidemic obese mice: LCAT gene transfer decreases atherosclerosis.
    Mertens A; Verhamme P; Bielicki JK; Phillips MC; Quarck R; Verreth W; Stengel D; Ninio E; Navab M; Mackness B; Mackness M; Holvoet P
    Circulation; 2003 Apr; 107(12):1640-6. PubMed ID: 12668499
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CD36, a novel receptor for oxidized low-density lipoproteins, is highly expressed on lipid-laden macrophages in human atherosclerotic aorta.
    Nakata A; Nakagawa Y; Nishida M; Nozaki S; Miyagawa J; Nakagawa T; Tamura R; Matsumoto K; Kameda-Takemura K; Yamashita S; Matsuzawa Y
    Arterioscler Thromb Vasc Biol; 1999 May; 19(5):1333-9. PubMed ID: 10323787
    [TBL] [Abstract][Full Text] [Related]  

  • 28. beta-VLDL and acetylated-LDL binding to pigeon monocyte macrophages.
    Henson DA; St Clair RW; Lewis JC
    Atherosclerosis; 1989 Jul; 78(1):47-60. PubMed ID: 2667527
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lipoprotein oxidation and atherosclerosis.
    Young IS; McEneny J
    Biochem Soc Trans; 2001 May; 29(Pt 2):358-62. PubMed ID: 11356183
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lipoprotein modification: cellular mechanisms.
    Chait A; Heinecke JW
    Curr Opin Lipidol; 1994 Oct; 5(5):365-70. PubMed ID: 7858911
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Native low density lipoprotein-induced calcium transients trigger VCAM-1 and E-selectin expression in cultured human vascular endothelial cells.
    Allen S; Khan S; Al-Mohanna F; Batten P; Yacoub M
    J Clin Invest; 1998 Mar; 101(5):1064-75. PubMed ID: 9486977
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Iron and LDL-oxidation in atherogenesis.
    Yuan XM; Brunk UT
    APMIS; 1998 Sep; 106(9):825-42. PubMed ID: 9808409
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Macrophages, endothelial cells, and lipoprotein oxidation in the pathogenesis of atherosclerosis.
    Rosenfeld ME; Palinski W; Ylä-Herttuala S; Carew TE
    Toxicol Pathol; 1990; 18(4 Pt 1):560-71. PubMed ID: 2091235
    [TBL] [Abstract][Full Text] [Related]  

  • 34. New scavenger receptors and their functions in atherogenesis.
    Kume N; Kita T
    Curr Atheroscler Rep; 2002 Jul; 4(4):253-7. PubMed ID: 12052275
    [No Abstract]   [Full Text] [Related]  

  • 35. Lesion-derived low density lipoprotein and oxidized low density lipoprotein share a lability for aggregation, leading to enhanced macrophage degradation.
    Hoff HF; O'Neil J
    Arterioscler Thromb; 1991; 11(5):1209-22. PubMed ID: 1911707
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A macrophage receptor for oxidized low density lipoprotein distinct from the receptor for acetyl low density lipoprotein: partial purification and role in recognition of oxidatively damaged cells.
    Ottnad E; Parthasarathy S; Sambrano GR; Ramprasad MP; Quehenberger O; Kondratenko N; Green S; Steinberg D
    Proc Natl Acad Sci U S A; 1995 Feb; 92(5):1391-5. PubMed ID: 7533292
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inhibition of the uptake of oxidized low-density lipoprotein in macrophage J774 by the antibiotic ikarugamycin.
    Hasumi K; Shinohara C; Naganuma S; Endo A
    Eur J Biochem; 1992 Apr; 205(2):841-6. PubMed ID: 1572375
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In-vitro carboxymethylation of low density lipoprotein alters its metabolism via the high-affinity receptor.
    Gempel KE; Gerbitz KD; Olgemöller B; Schleicher ED
    Horm Metab Res; 1993 May; 25(5):250-2. PubMed ID: 8330857
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Macrophage foam cell formation during early atherogenesis is determined by the balance between pro-oxidants and anti-oxidants in arterial cells and blood lipoproteins.
    Aviram M
    Antioxid Redox Signal; 1999; 1(4):585-94. PubMed ID: 11233155
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Macrophages and oxidized low density lipoproteins in the pathogenesis of atherosclerosis.
    Ylä-Herttuala S
    Ann Med; 1991; 23(5):561-7. PubMed ID: 1721825
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.