BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 1461931)

  • 1. Cancer destruction in vivo through disrupted energy metabolism. Part I. The endogenous mechanism of self-destruction within the malignant cell, and the roles of endotoxin, certain hormones and drugs, and active oxygen in causing cellular injury and death.
    Jones GR
    Physiol Chem Phys Med NMR; 1992; 24(3):169-79. PubMed ID: 1461931
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cancer destruction in vivo through disrupted energy metabolism. Part II. Lipid peroxidation and cell death; drug resistance as a consequence of reversible cellular injury.
    Jones GR
    Physiol Chem Phys Med NMR; 1992; 24(3):181-94. PubMed ID: 1461932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cancer destruction in vivo through disrupted energy metabolism. Part III. Spontaneous drug resistance, selectivity of antineoplastic action, and strategies for intensifying tumor injury.
    Jones GR
    Physiol Chem Phys Med NMR; 1992; 24(3):195-212. PubMed ID: 1461933
    [TBL] [Abstract][Full Text] [Related]  

  • 4. D-Serine exposure resulted in gene expression changes indicative of activation of fibrogenic pathways and down-regulation of energy metabolism and oxidative stress response.
    Soto A; DelRaso NJ; Schlager JJ; Chan VT
    Toxicology; 2008 Jan; 243(1-2):177-92. PubMed ID: 18061331
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondria, metabolic disturbances, oxidative stress and the kynurenine system, with focus on neurodegenerative disorders.
    Sas K; Robotka H; Toldi J; Vécsei L
    J Neurol Sci; 2007 Jun; 257(1-2):221-39. PubMed ID: 17462670
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidative stress, mitochondrial dysfunction and cellular stress response in Friedreich's ataxia.
    Calabrese V; Lodi R; Tonon C; D'Agata V; Sapienza M; Scapagnini G; Mangiameli A; Pennisi G; Stella AM; Butterfield DA
    J Neurol Sci; 2005 Jun; 233(1-2):145-62. PubMed ID: 15896810
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Endogenous and induced oxidative stress in multi-cellular tumour spheroids: implications for improving tumour therapy.
    Khaitan D; Dwarakanath BS
    Indian J Biochem Biophys; 2009 Feb; 46(1):16-24. PubMed ID: 19374249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Free oxygen radiacals and kidney diseases--part I].
    Sakac V; Sakac M
    Med Pregl; 2000; 53(9-10):463-74. PubMed ID: 11320727
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of programmed (apoptotic) cell death during the progression and therapy for prostate cancer.
    Denmeade SR; Lin XS; Isaacs JT
    Prostate; 1996 Apr; 28(4):251-65. PubMed ID: 8602401
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Therapeutic strategies by modulating oxygen stress in cancer and inflammation.
    Fang J; Seki T; Maeda H
    Adv Drug Deliv Rev; 2009 Apr; 61(4):290-302. PubMed ID: 19249331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of antioxidants and hyperthermia enhance bleomycin-induced cytotoxicity and lipid peroxidation in Chinese hamster ovary cells.
    Khadir A; Verreault J; Averill DA
    Arch Biochem Biophys; 1999 Oct; 370(2):163-75. PubMed ID: 10510274
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Free radicals, metals and antioxidants in oxidative stress-induced cancer.
    Valko M; Rhodes CJ; Moncol J; Izakovic M; Mazur M
    Chem Biol Interact; 2006 Mar; 160(1):1-40. PubMed ID: 16430879
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The mechanism of cytoprotective action of lazaroids I: Inhibition of reactive oxygen species formation and lethal cell injury during periods of energy depletion.
    Taylor BM; Fleming WE; Benjamin CW; Wu Y; Mathews WR; Sun FF
    J Pharmacol Exp Ther; 1996 Mar; 276(3):1224-31. PubMed ID: 8786555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeting of cancer energy metabolism.
    Rodríguez-Enríquez S; Marín-Hernández A; Gallardo-Pérez JC; Carreño-Fuentes L; Moreno-Sánchez R
    Mol Nutr Food Res; 2009 Jan; 53(1):29-48. PubMed ID: 19123180
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cancer therapy at the crossroads: which direction for the future?
    Jones GR
    Physiol Chem Phys Med NMR; 1991; 23(4):217-20. PubMed ID: 1812501
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antioxidant therapy: a new pharmacological approach in shock, inflammation, and ischemia/reperfusion injury.
    Cuzzocrea S; Riley DP; Caputi AP; Salvemini D
    Pharmacol Rev; 2001 Mar; 53(1):135-59. PubMed ID: 11171943
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Free radicals and antioxidants: physiology, human pathology and therapeutic aspects (part II)].
    Sahnoun Z; Jamoussi K; Zeghal KM
    Therapie; 1998; 53(4):315-39. PubMed ID: 9806002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of multicellular resistance on the survival of solid tumors, including micrometastases.
    Kerbel RS
    Invasion Metastasis; 1994-1995; 14(1-6):50-60. PubMed ID: 7657532
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitric oxide and cellular stress response in brain aging and neurodegenerative disorders: the role of vitagenes.
    Calabrese V; Boyd-Kimball D; Scapagnini G; Butterfield DA
    In Vivo; 2004; 18(3):245-67. PubMed ID: 15341181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of apoptosis in normal ontogenesis and solid human neoplasms.
    Kaiser HE; Bodey B
    In Vivo; 2000; 14(6):789-803. PubMed ID: 11204498
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.