These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 14620064)

  • 21. Effect of branchings on blood flow in the system of human coronary arteries.
    Wiwatanapataphee B; Wu YH; Siriapisith T; Nuntadilok B
    Math Biosci Eng; 2012 Jan; 9(1):199-214. PubMed ID: 22229404
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A turbulence model for pulsatile arterial flows.
    Younis BA; Berger SA
    J Biomech Eng; 2004 Oct; 126(5):578-84. PubMed ID: 15648810
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Wall shear stress estimates in coronary artery constrictions.
    Back LH; Crawford DW
    J Biomech Eng; 1992 Nov; 114(4):515-20. PubMed ID: 1487905
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Combined effects of pulsatile flow and dynamic curvature on wall shear stress in a coronary artery bifurcation model.
    Pivkin IV; Richardson PD; Laidlaw DH; Karniadakis GE
    J Biomech; 2005 Jun; 38(6):1283-90. PubMed ID: 15863113
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nonlinear model on pulsatile flow of blood through a porous bifurcated arterial stenosis in the presence of magnetic field and periodic body acceleration.
    Ponalagusamy R; Priyadharshini S
    Comput Methods Programs Biomed; 2017 Apr; 142():31-41. PubMed ID: 28325445
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Critical evaluation of three hemodynamic models for the numerical simulation of intra-stent flows.
    Chabi F; Champmartin S; Sarraf C; Noguera R
    J Biomech; 2015 Jul; 48(10):1769-76. PubMed ID: 26044195
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Finite element simulation of pulsatile flow through arterial stenosis.
    Tu C; Deville M; Dheur L; Vanderschuren L
    J Biomech; 1992 Oct; 25(10):1141-52. PubMed ID: 1400514
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A viscoelastic model of arterial wall motion in pulsatile flow: implications for Doppler ultrasound clutter assessment.
    Warriner RK; Johnston KW; Cobbold RS
    Physiol Meas; 2008 Feb; 29(2):157-79. PubMed ID: 18256449
    [TBL] [Abstract][Full Text] [Related]  

  • 29. One-dimensional computer analysis of oscillatory flow in rigid tubes.
    Donovan FM; Taylor BC; Su MC
    J Biomech Eng; 1991 Nov; 113(4):476-84. PubMed ID: 1762446
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Impaired compliance of the intracranial vessels in complicated childhood migraine. Demonstration by transcranial Doppler-sonography--a vascular model approach.
    Rupprecht T; Hofbeck M; Wenzel D
    Ultraschall Med; 2001 Jun; 22(3):122-9. PubMed ID: 11484443
    [TBL] [Abstract][Full Text] [Related]  

  • 31. MRI-based CFD analysis of flow in a human left ventricle: methodology and application to a healthy heart.
    Schenkel T; Malve M; Reik M; Markl M; Jung B; Oertel H
    Ann Biomed Eng; 2009 Mar; 37(3):503-15. PubMed ID: 19130229
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of compliance mismatch on flow disturbances in a model of an arterial graft replacement.
    Miyawaki F; How TV; Annis D
    Med Biol Eng Comput; 1990 Sep; 28(5):457-64. PubMed ID: 2277546
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lumped flow modeling in dynamically loaded coronary vessels.
    Jacobs J; Algranati D; Lanir Y
    J Biomech Eng; 2008 Oct; 130(5):054504. PubMed ID: 19045528
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Estimation of increased flow resistance in a narrow catheterized artery--a theoretical model.
    Dash RK; Jayaraman G; Mehta KN
    J Biomech; 1996 Jul; 29(7):917-30. PubMed ID: 8809622
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A comparison of estimation methods for computational fluid dynamics outflow boundary conditions using patient-specific carotid artery.
    Lee CJ; Uemiya N; Ishihara S; Zhang Y; Qian Y
    Proc Inst Mech Eng H; 2013 Jun; 227(6):663-71. PubMed ID: 23636745
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Improving arterial pulsatility by feedback control of a continuous flow left ventricular assist device via in silico modeling.
    Bozkurt S; van de Vosse FN; Rutten MC
    Int J Artif Organs; 2014 Oct; 37(10):773-85. PubMed ID: 24970558
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The role of the arterial prestress in blood flow dynamics.
    Pontrelli G
    Med Eng Phys; 2006 Jan; 28(1):6-12. PubMed ID: 15941665
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Velocity and wall shear stress patterns in the human right coronary artery.
    Kirpalani A; Park H; Butany J; Johnston KW; Ojha M
    J Biomech Eng; 1999 Aug; 121(4):370-5. PubMed ID: 10464690
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Numerical simulations of pulsatile blood flow using a new constitutive model.
    Fang J; Owens RG
    Biorheology; 2006; 43(5):637-60. PubMed ID: 17047282
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Impact of Different Perfusion Modalities on Coronary and Carotid Blood Flow Velocities in an Adult ECLS Swine Model.
    Wang S; Patel S; Izer JM; Clark JB; Kunselman AR; Wilson RP; Ündar A
    Artif Organs; 2018 Sep; 42(9):918-921. PubMed ID: 29660857
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.