These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 14620527)

  • 21. Culture model of human corneal epithelium for prediction of ocular drug absorption.
    Toropainen E; Ranta VP; Talvitie A; Suhonen P; Urtti A
    Invest Ophthalmol Vis Sci; 2001 Nov; 42(12):2942-8. PubMed ID: 11687540
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluation of layers of the rat airway epithelial cell line RL-65 for permeability screening of inhaled drug candidates.
    Hutter V; Hilgendorf C; Cooper A; Zann V; Pritchard DI; Bosquillon C
    Eur J Pharm Sci; 2012 Sep; 47(2):481-9. PubMed ID: 22820031
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Engineering of dendrimer surfaces to enhance transepithelial transport and reduce cytotoxicity.
    Jevprasesphant R; Penny J; Attwood D; McKeown NB; D'Emanuele A
    Pharm Res; 2003 Oct; 20(10):1543-50. PubMed ID: 14620505
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Establishment of a confluent monolayer model with human primary trophoblast cells: novel insights into placental glucose transport.
    Huang X; Lüthi M; Ontsouka EC; Kallol S; Baumann MU; Surbek DV; Albrecht C
    Mol Hum Reprod; 2016 Jun; 22(6):442-56. PubMed ID: 26931579
    [TBL] [Abstract][Full Text] [Related]  

  • 25. No effect of histamine on human bronchial epithelial cell permeability and tight junctional integrity in vitro.
    Devalia JL; Godfrey RW; Sapsford RJ; Severs NJ; Jeffery PK; Davies RJ
    Eur Respir J; 1994 Nov; 7(11):1958-65. PubMed ID: 7875265
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Equine bronchial fibroblasts enhance proliferation and differentiation of primary equine bronchial epithelial cells co-cultured under air-liquid interface.
    Abs V; Bonicelli J; Kacza J; Zizzadoro C; Abraham G
    PLoS One; 2019; 14(11):e0225025. PubMed ID: 31721813
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Use of alveolar cell monolayers of varying electrical resistance to measure pulmonary peptide transport.
    Dodoo AN; Bansal SS; Barlow DJ; Bennet F; Hider RC; Lansley AB; Lawrence MJ; Marriott C
    J Pharm Sci; 2000 Feb; 89(2):223-31. PubMed ID: 10688751
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Application of RPMI 2650 as a cell model to evaluate solid formulations for intranasal delivery of drugs.
    Gonçalves VSS; Matias AA; Poejo J; Serra AT; Duarte CMM
    Int J Pharm; 2016 Dec; 515(1-2):1-10. PubMed ID: 27702697
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Organic cation transport in rabbit alveolar epithelial cell monolayers.
    Shen J; Elbert KJ; Yamashita F; Lehr CM; Kim KJ; Lee VH
    Pharm Res; 1999 Aug; 16(8):1280-7. PubMed ID: 10468032
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CFTR and tight junctions in cultured bronchial epithelial cells.
    Nilsson HE; Dragomir A; Lazorova L; Johannesson M; Roomans GM
    Exp Mol Pathol; 2010 Feb; 88(1):118-27. PubMed ID: 19818767
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluation of the Caco-2 monolayer as a model epithelium for iontophoretic transport.
    Leonard M; Creed E; Brayden D; Baird AW
    Pharm Res; 2000 Oct; 17(10):1181-8. PubMed ID: 11145222
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An improved primary human nasal cell culture for the simultaneous determination of transepithelial transport and ciliary beat frequency.
    Mallants R; Vlaeminck V; Jorissen M; Augustijns P
    J Pharm Pharmacol; 2009 Jul; 61(7):883-90. PubMed ID: 19589230
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of HT29-18-C1 and Caco-2 cell lines as models for studying intestinal paracellular drug absorption.
    Collett A; Sims E; Walker D; He YL; Ayrton J; Rowland M; Warhurst G
    Pharm Res; 1996 Feb; 13(2):216-21. PubMed ID: 8932439
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of human tracheal/bronchial epithelial cell culture and bovine nasal respiratory explants for nasal drug transport studies.
    Chemuturi NV; Hayden P; Klausner M; Donovan MD
    J Pharm Sci; 2005 Sep; 94(9):1976-85. PubMed ID: 16052562
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optimisation of culture conditions to develop an in vitro pulmonary permeability model.
    Geys J; Nemery B; Hoet PH
    Toxicol In Vitro; 2007 Oct; 21(7):1215-9. PubMed ID: 17629671
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Active hexose transport across cultured human Caco-2 cells: characterisation and influence of culture conditions.
    Riley SA; Warhurst G; Crowe PT; Turnberg LA
    Biochim Biophys Acta; 1991 Jul; 1066(2):175-82. PubMed ID: 1906749
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Poly-L-arginine predominantly increases the paracellular permeability of hydrophilic macromolecules across rabbit nasal epithelium in vitro.
    Ohtake K; Maeno T; Ueda H; Natsume H; Morimoto Y
    Pharm Res; 2003 Feb; 20(2):153-60. PubMed ID: 12636152
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Permeability characteristics of parental and clonal human intestinal Caco-2 cell lines differentiated in serum-supplemented and serum-free media.
    Ranaldi G; Consalvo R; Sambuy Y; Scarino ML
    Toxicol In Vitro; 2003; 17(5-6):761-7. PubMed ID: 14599474
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Growth and differentiation of human nasal epithelial cells in culture. Serum-free, hormone-supplemented medium and proteoglycan synthesis.
    Wu R; Yankaskas J; Cheng E; Knowles MR; Boucher R
    Am Rev Respir Dis; 1985 Aug; 132(2):311-20. PubMed ID: 3896079
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Establishment of an in vitro brain barrier epithelial transport system for pharmacological and toxicological study.
    Shi LZ; Zheng W
    Brain Res; 2005 Sep; 1057(1-2):37-48. PubMed ID: 16126179
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.