BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 14620975)

  • 1. Impaction bone grafting with freeze-dried irradiated bone. Part II. Changes in stiffness and compactness of morselized grafts: experiments in cadavers.
    Cornu O; Bavadekar A; Godts B; Van Tomme J; Delloye C; Banse X
    Acta Orthop Scand; 2003 Oct; 74(5):553-8. PubMed ID: 14620975
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Freeze-dried irradiated bone brittleness improves compactness in an impaction bone grafting model.
    Cornu O; Libouton X; Naets B; Godts B; Van Tomme J; Delloye C; Banse X
    Acta Orthop Scand; 2004 Jun; 75(3):309-14. PubMed ID: 15260423
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neck fracture femoral heads for impaction bone grafting: evolution of stiffness and compactness during impaction of osteoarthrotic and neck-fracture femoral heads.
    Cornu O; Manil O; Godts B; Naets B; Van Tomme J; Delloye C; Banse X
    Acta Orthop Scand; 2004 Jun; 75(3):303-8. PubMed ID: 15260422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Particle size influence in an impaction bone grafting model. Comparison of fresh-frozen and freeze-dried allografts.
    Cornu O; Schubert T; Libouton X; Manil O; Godts B; Van Tomme J; Banse X; Delloye C
    J Biomech; 2009 Oct; 42(14):2238-42. PubMed ID: 19656513
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impaction bone grafting with freeze-dried irradiated bone. Part I. Femoral implant stability: cadaver experiments in a hip simulator.
    Cornu O; Bavadekar A; Godts B; Van Tomme J; Delloye C; Banse X
    Acta Orthop Scand; 2003 Oct; 74(5):547-52. PubMed ID: 14620974
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stiffness and compactness of morselized grafts during impaction: an in vitro study with human femoral heads.
    Bavadekar A; Cornu O; Godts B; Delloye C; Van Tomme J; Banse X
    Acta Orthop Scand; 2001 Oct; 72(5):470-6. PubMed ID: 11728073
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of freeze-drying and rehydration on cancellous bone.
    Conrad EU; Ericksen DP; Tencer AF; Strong DM; Mackenzie AP
    Clin Orthop Relat Res; 1993 May; (290):279-84. PubMed ID: 8472461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of freeze-drying and gamma irradiation on the mechanical properties of human cancellous bone.
    Cornu O; Banse X; Docquier PL; Luyckx S; Delloye C
    J Orthop Res; 2000 May; 18(3):426-31. PubMed ID: 10937629
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of freeze-drying or gamma-irradiation on remodeling of tendon allograft in a rat model.
    Toritsuka Y; Shino K; Horibe S; Nakamura N; Matsumoto N; Ochi T
    J Orthop Res; 1997 Mar; 15(2):294-300. PubMed ID: 9167634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decreasing strength of bone allograft after recovery and preservation.
    Kayurapan A; Aresanasuwan T; Waikakul S
    J Med Assoc Thai; 2009 Sep; 92 Suppl5():S76-80. PubMed ID: 19894334
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adjuvant therapies of bone graft around non-cemented experimental orthopedic implants stereological methods and experiments in dogs.
    Baas J
    Acta Orthop Suppl; 2008 Aug; 79(330):1-43. PubMed ID: 19065776
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A laboratory simulation for morselized bone graft fusion: apparent modulus under operatively based femoral impaction kinetics.
    Heiner AD; Callaghan JJ; Brown TD
    J Biomech; 2005 Apr; 38(4):811-8. PubMed ID: 15713302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanical comparison of bone graft used in anterior spinal reconstruction. Freeze-dried demineralized femoral segments versus fresh fibular segments and tricortical iliac blocks in autopsy specimens.
    Rao S; McKellop H; Chao D; Schildhauer TA; Gendler E; Moore TM
    Clin Orthop Relat Res; 1993 Apr; (289):131-5. PubMed ID: 8472403
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical properties of 7-10mm bone grafts and small slurry grafts in impaction bone grafting.
    Xu ZJ; Chen LY; Zhong C; Tan YB; He RX
    J Orthop Res; 2011 Oct; 29(10):1491-5. PubMed ID: 21469177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Larger bone graft size and washing of bone grafts prior to impaction enhances the initial stability of cemented cups: experiments using a synthetic acetabular model.
    Arts JJ; Verdonschot N; Buma P; Schreurs BW
    Acta Orthop; 2006 Apr; 77(2):227-33. PubMed ID: 16752283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Good preservation of initial mechanical properties in lipid-extracted, disinfected, freeze-dried sheep patellar tendon grafts.
    Bettin D; Polster J; Rullkötter V; von Versen R; Fuchs S
    Acta Orthop Scand; 2003 Aug; 74(4):470-5. PubMed ID: 14521301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scanning electron microscopic and light microscopic observations on morphological changes of freeze-dried bone implantation in rats: comparison with fresh autogenous bone transplantation.
    Matsuda M; Satoh Y; Ono K
    Histol Histopathol; 1992 Jul; 7(3):393-403. PubMed ID: 1504459
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical properties of gamma irradiated morselized bone during compaction.
    Butler AM; Morgan DA; Verheul R; Walsh WR
    Biomaterials; 2005 Oct; 26(30):6009-13. PubMed ID: 15958242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of freeze-drying and gamma irradiation on biomechanical properties of bovine pericardium.
    Hafeez YM; Zuki AB; Yusof N; Asnah H; Loqman MY; Noordin MM; Ainul-Yuzairi MY
    Cell Tissue Bank; 2005; 6(2):85-9. PubMed ID: 15909095
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Freeze-dried allogeneic segmental cortical-bone grafts in dogs.
    Burchardt H; Jones H; Glowczewskie F; Rudner C; Enneking WF
    J Bone Joint Surg Am; 1978 Dec; 60(8):1082-90. PubMed ID: 363723
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.