BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 14621002)

  • 1. Degradation of poly (DL-lactic acid-co-glycolic acid) containing calcium carbonate and hydroxyapatite fillers--effect of size and shape of the fillers--.
    Tsunoda M
    Dent Mater J; 2003 Sep; 22(3):371-82. PubMed ID: 14621002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of blending calcium compounds on hydrolytic degradation of poly(DL-lactic acid-co-glycolic acid).
    Ara M; Watanabe M; Imai Y
    Biomaterials; 2002 Jun; 23(12):2479-83. PubMed ID: 12033595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The degradation of the three layered nano-carbonated hydroxyapatite/collagen/PLGA composite membrane in vitro.
    Liao S; Watari F; Zhu Y; Uo M; Akasaka T; Wang W; Xu G; Cui F
    Dent Mater; 2007 Sep; 23(9):1120-8. PubMed ID: 17095082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro degradation of thin poly(DL-lactic-co-glycolic acid) films.
    Lu L; Garcia CA; Mikos AG
    J Biomed Mater Res; 1999 Aug; 46(2):236-44. PubMed ID: 10380002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro and in vivo degradation of porous poly(DL-lactic-co-glycolic acid) foams.
    Lu L; Peter SJ; Lyman MD; Lai HL; Leite SM; Tamada JA; Uyama S; Vacanti JP; Langer R; Mikos AG
    Biomaterials; 2000 Sep; 21(18):1837-45. PubMed ID: 10919687
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of the microencapsulation method and peptide loading on poly(lactic acid) and poly(lactic-co-glycolic acid) degradation during in vitro testing.
    Witschi C; Doelker E
    J Control Release; 1998 Feb; 51(2-3):327-41. PubMed ID: 9685930
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Poly(DL-lactic-co-glycolic acid) sponge hybridized with collagen microsponges and deposited apatite particulates.
    Chen G; Ushida T; Tateishi T
    J Biomed Mater Res; 2001 Oct; 57(1):8-14. PubMed ID: 11416843
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low temperature formation of calcium-deficient hydroxyapatite-PLA/PLGA composites.
    Durucan C; Brown PW
    J Biomed Mater Res; 2000 Sep; 51(4):717-25. PubMed ID: 10880121
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of poly(lactic-co-glycolic acid) (PLGA) degradability on the apatite-forming capacity of electrospun PLGA/SiO(2)-CaO nonwoven composite fabrics.
    Kim IA; Rhee SH
    J Biomed Mater Res B Appl Biomater; 2010 Apr; 93(1):218-26. PubMed ID: 20091921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physicomechanical properties of biodegradable poly(D,L-lactide) and poly(D,L-lactide-co-glycolide) films in the dry and wet states.
    Kranz H; Ubrich N; Maincent P; Bodmeier R
    J Pharm Sci; 2000 Dec; 89(12):1558-66. PubMed ID: 11042603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of ceramic filler content on the mechanical and thermal behaviour of poly-L-lactic acid and poly-L-lactic-co-glycolic acid composites for medical applications.
    Damadzadeh B; Jabari H; Skrifvars M; Airola K; Moritz N; Vallittu PK
    J Mater Sci Mater Med; 2010 Sep; 21(9):2523-31. PubMed ID: 20552389
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decreased fibroblast cell density on chemically degraded poly-lactic-co-glycolic acid, polyurethane, and polycaprolactone.
    Vance RJ; Miller DC; Thapa A; Haberstroh KM; Webster TJ
    Biomaterials; 2004 May; 25(11):2095-103. PubMed ID: 14741624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rheological properties of PLGA film-based implants: correlation with polymer degradation and SPf66 antimalaric synthetic peptide release.
    Santoveña A; Alvarez-Lorenzo C; Concheiro A; Llabrés M; Fariña JB
    Biomaterials; 2004 Feb; 25(5):925-31. PubMed ID: 14609681
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of the type of HA on the degradation of PLGA/HA composites.
    Naik A; Shepherd DV; Shepherd JH; Best SM; Cameron RE
    Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):824-831. PubMed ID: 27770960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro and in vivo degradation of poly(L: -lactide-co-glycolide) films and scaffolds.
    Pamula E; Menaszek E
    J Mater Sci Mater Med; 2008 May; 19(5):2063-70. PubMed ID: 17968505
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanostructured hydroxyapatite/poly(lactic-co-glycolic acid) composite coating for controlling magnesium degradation in simulated body fluid.
    Johnson I; Akari K; Liu H
    Nanotechnology; 2013 Sep; 24(37):375103. PubMed ID: 23975041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Size and temperature effects on poly(lactic-co-glycolic acid) degradation and microreservoir device performance.
    Grayson AC; Cima MJ; Langer R
    Biomaterials; 2005 May; 26(14):2137-45. PubMed ID: 15576189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential degradation rates in vivo and in vitro of biocompatible poly(lactic acid) and poly(glycolic acid) homo- and co-polymers for a polymeric drug-delivery microchip.
    Grayson AC; Voskerician G; Lynn A; Anderson JM; Cima MJ; Langer R
    J Biomater Sci Polym Ed; 2004; 15(10):1281-304. PubMed ID: 15559850
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved small molecule drug release from in situ forming poly(lactic-co-glycolic acid) scaffolds incorporating poly(β-amino ester) and hydroxyapatite microparticles.
    Fisher PD; Palomino P; Milbrandt TA; Hilt JZ; Puleo DA
    J Biomater Sci Polym Ed; 2014; 25(11):1174-93. PubMed ID: 24903524
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of preparation route on the degradation behavior and ion releasability of siloxane-poly(lactic acid)-vaterite hybrid nonwoven fabrics for guided bone regeneration.
    Wakita T; Nakamura J; Ota Y; Obata A; Kasuga T; Ban S
    Dent Mater J; 2011; 30(2):232-8. PubMed ID: 21415554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.