These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 14621107)

  • 1. Muscle wasting and changes in muscle protein metabolism in chronic obstructive pulmonary disease.
    Jagoe RT; Engelen MP
    Eur Respir J Suppl; 2003 Nov; 46():52s-63s. PubMed ID: 14621107
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Triggers and mechanisms of skeletal muscle wasting in chronic obstructive pulmonary disease.
    Langen RC; Gosker HR; Remels AH; Schols AM
    Int J Biochem Cell Biol; 2013 Oct; 45(10):2245-56. PubMed ID: 23827718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellular markers of muscle atrophy in chronic obstructive pulmonary disease.
    Plant PJ; Brooks D; Faughnan M; Bayley T; Bain J; Singer L; Correa J; Pearce D; Binnie M; Batt J
    Am J Respir Cell Mol Biol; 2010 Apr; 42(4):461-71. PubMed ID: 19520920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Altered amino acid metabolism in chronic obstructive pulmonary disease: new therapeutic perspective?
    Engelen MP; Schols AM
    Curr Opin Clin Nutr Metab Care; 2003 Jan; 6(1):73-8. PubMed ID: 12496683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chronic obstructive pulmonary disease. 5: systemic effects of COPD.
    Wouters EF
    Thorax; 2002 Dec; 57(12):1067-70. PubMed ID: 12454303
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 2D-DIGE proteomic analysis of vastus lateralis from COPD patients with low and normal fat free mass index and healthy controls.
    Lakhdar R; Drost EM; MacNee W; Bastos R; Rabinovich RA
    Respir Res; 2017 May; 18(1):81. PubMed ID: 28468631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Serum myostatin levels and skeletal muscle wasting in chronic obstructive pulmonary disease.
    Ju CR; Chen RC
    Respir Med; 2012 Jan; 106(1):102-8. PubMed ID: 21840694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Does oxidative stress modulate limb muscle atrophy in severe COPD patients?
    Fermoselle C; Rabinovich R; Ausín P; Puig-Vilanova E; Coronell C; Sanchez F; Roca J; Gea J; Barreiro E
    Eur Respir J; 2012 Oct; 40(4):851-62. PubMed ID: 22408199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Preliminary proteomic analysis of peripheral skeletal muscle atrophy in chronic obstructive pulmonary disease].
    Guo W; Fu WP; Yang Y; Dai LM
    Zhonghua Yi Xue Za Zhi; 2012 Apr; 92(14):948-51. PubMed ID: 22781565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Greater whole-body myofibrillar protein breakdown in cachectic patients with chronic obstructive pulmonary disease.
    Rutten EP; Franssen FM; Engelen MP; Wouters EF; Deutz NE; Schols AM
    Am J Clin Nutr; 2006 Apr; 83(4):829-34. PubMed ID: 16600935
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The rat model of COPD skeletal muscle dysfunction induced by progressive cigarette smoke exposure: a pilot study.
    Su J; Li J; Lu Y; Li N; Li P; Wang Z; Wu W; Liu X
    BMC Pulm Med; 2020 Mar; 20(1):74. PubMed ID: 32293377
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular and biological pathways of skeletal muscle dysfunction in chronic obstructive pulmonary disease.
    Barreiro E; Gea J
    Chron Respir Dis; 2016 Aug; 13(3):297-311. PubMed ID: 27056059
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Skeletal muscle dysfunction in patients with chronic obstructive pulmonary disease.
    Kim HC; Mofarrahi M; Hussain SN
    Int J Chron Obstruct Pulmon Dis; 2008; 3(4):637-58. PubMed ID: 19281080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The mechanisms of cachexia underlying muscle dysfunction in COPD.
    Remels AH; Gosker HR; Langen RC; Schols AM
    J Appl Physiol (1985); 2013 May; 114(9):1253-62. PubMed ID: 23019314
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Myopathological features in skeletal muscle of patients with chronic obstructive pulmonary disease.
    Gosker HR; Kubat B; Schaart G; van der Vusse GJ; Wouters EF; Schols AM
    Eur Respir J; 2003 Aug; 22(2):280-5. PubMed ID: 12952261
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Downregulation of Akt/mammalian target of rapamycin pathway in skeletal muscle is associated with increased REDD1 expression in response to chronic hypoxia.
    Favier FB; Costes F; Defour A; Bonnefoy R; Lefai E; Baugé S; Peinnequin A; Benoit H; Freyssenet D
    Am J Physiol Regul Integr Comp Physiol; 2010 Jun; 298(6):R1659-66. PubMed ID: 20237300
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Systemic inflammation and skeletal muscle dysfunction in chronic obstructive pulmonary disease: state of the art and novel insights in regulation of muscle plasticity.
    Remels AH; Gosker HR; van der Velden J; Langen RC; Schols AM
    Clin Chest Med; 2007 Sep; 28(3):537-52, vi. PubMed ID: 17720042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Smoke-induced neuromuscular junction degeneration precedes the fibre type shift and atrophy in chronic obstructive pulmonary disease.
    Kapchinsky S; Vuda M; Miguez K; Elkrief D; de Souza AR; Baglole CJ; Aare S; MacMillan NJ; Baril J; Rozakis P; Sonjak V; Pion C; Aubertin-Leheudre M; Morais JA; Jagoe RT; Bourbeau J; Taivassalo T; Hepple RT
    J Physiol; 2018 Jul; 596(14):2865-2881. PubMed ID: 29663403
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The pathophysiology of cachexia in chronic obstructive pulmonary disease.
    Schols AM; Gosker HR
    Curr Opin Support Palliat Care; 2009 Dec; 3(4):282-7. PubMed ID: 19713853
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Skeletal muscle apoptosis and weight loss in chronic obstructive pulmonary disease.
    Agustí AG; Sauleda J; Miralles C; Gomez C; Togores B; Sala E; Batle S; Busquets X
    Am J Respir Crit Care Med; 2002 Aug; 166(4):485-9. PubMed ID: 12186825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.