These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

341 related articles for article (PubMed ID: 14621149)

  • 1. Investigations on phosphorus retention in subsurface flow constructed wetlands.
    Rustige H; Tomac I; Höner G
    Water Sci Technol; 2003; 48(5):67-74. PubMed ID: 14621149
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nutrient removal in subsurface flow constructed wetlands for application in sensitive regions.
    Rustige H; Platzer C
    Water Sci Technol; 2001; 44(11-12):149-55. PubMed ID: 11804087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphorus removal in a vertical upflow constructed wetland system.
    Farahbakhshazad N; Morrison GM
    Water Sci Technol; 2003; 48(5):43-50. PubMed ID: 14621146
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphorus retention in subsurface constructed wetlands: investigations focused on calcareous materials and their chemical reactions.
    Molle P; Liénard A; Grasmick A; Iwema A
    Water Sci Technol; 2003; 48(5):75-83. PubMed ID: 14621150
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphorus removal from municipal wastewater in an experimental two-stage vertical flow constructed wetland system equipped with a calcite filter.
    Arias CA; Brix H; Johansen NH
    Water Sci Technol; 2003; 48(5):51-8. PubMed ID: 14621147
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nutrient removal from piggery effluent using vertical flow constructed wetlands in southern Brazil.
    Sezerino PH; Reginatto V; Santos MA; Kayser K; Kunst S; Philippi LS; Soares HM
    Water Sci Technol; 2003; 48(2):129-35. PubMed ID: 14510203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphorus retention capacity of iron-ore and blast furnace slag in subsurface flow constructed wetlands.
    Grüneberg B; Kern J
    Water Sci Technol; 2001; 44(11-12):69-75. PubMed ID: 11804160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamics of phosphorus, nitrogen and carbon removal in a horizontal subsurface flow constructed wetland.
    Vohla C; Alas R; Nurk K; Baatz S; Mander U
    Sci Total Environ; 2007 Jul; 380(1-3):66-74. PubMed ID: 17081592
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Initial contaminant removal performance factors in horizontal flow reed beds used for treating urban wastewater.
    García J; Aguirre P; Mujeriego R; Huang Y; Ortiz L; Bayona JM
    Water Res; 2004 Apr; 38(7):1669-78. PubMed ID: 15026221
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitrogen removal from domestic effluent using subsurface flow constructed wetlands: influence of depth, hydraulic residence time and pre-nitrification.
    Bayley ML; Davison L; Headley TR
    Water Sci Technol; 2003; 48(5):175-82. PubMed ID: 14621162
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of extremely shallow vertical subsurface flow constructed wetland for nutrient removal.
    Taniguchi T; Nakano K; Chiba N; Nomura M; Nishimura O
    Water Sci Technol; 2009; 59(2):295-301. PubMed ID: 19182340
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of blast furnace granulated slag as a substrate in vertical flow reed beds: field application.
    Asuman Korkusuz E; Beklioğlu M; Demirer GN
    Bioresour Technol; 2007 Aug; 98(11):2089-101. PubMed ID: 17070037
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance of experimental horizontal subsurface flow constructed wetlands fed with dissolved or particulate organic matter.
    Caselles-Osorio A; García J
    Water Res; 2006 Nov; 40(19):3603-11. PubMed ID: 16872658
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitrogen and phosphorus removal from plant nursery runoff in vegetated and unvegetated subsurface flow wetlands.
    Huett DO; Morris SG; Smith G; Hunt N
    Water Res; 2005 Sep; 39(14):3259-72. PubMed ID: 16023175
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subsurface-flow constructed wetlands treatment in the plains: five years of experience.
    Dahab MF; Surampalli RY
    Water Sci Technol; 2001; 44(11-12):375-80. PubMed ID: 11804121
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal of nutrients in various types of constructed wetlands.
    Vymazal J
    Sci Total Environ; 2007 Jul; 380(1-3):48-65. PubMed ID: 17078997
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potential of constructed wetlands in treating the eutrophic water: evidence from Taihu Lake of China.
    Li L; Li Y; Biswas DK; Nian Y; Jiang G
    Bioresour Technol; 2008 Apr; 99(6):1656-63. PubMed ID: 17532209
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solids accumulation in six full-scale subsurface flow constructed wetlands.
    Caselles-Osorio A; Puigagut J; Segú E; Vaello N; Granés F; García D; García J
    Water Res; 2007 Mar; 41(6):1388-98. PubMed ID: 17275066
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Danish guidelines for small-scale constructed wetland systems for onsite treatment of domestic sewage.
    Brix H; Arias CA
    Water Sci Technol; 2005; 51(9):1-9. PubMed ID: 16042237
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of vertical and horizontal flow planted and unplanted subsurface flow wetlands treating municipal wastewater.
    Pandey MK; Jenssen PD; Krogstad T; Jonasson S
    Water Sci Technol; 2013; 68(1):117-23. PubMed ID: 23823547
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.