These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

379 related articles for article (PubMed ID: 14621154)

  • 41. Accumulation and fate of selected heavy metals in a biological wastewater treatment system.
    Chipasa KB
    Waste Manag; 2003; 23(2):135-43. PubMed ID: 12623088
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Bioleaching of metals from sludges and acid production under increased metal concentrations.
    Bickers PO; Chong RC; Bhamidimarri R; Killick MG
    Water Sci Technol; 2003; 48(8):169-76. PubMed ID: 14682584
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Potential for land application of contaminated sewage sludge treated with fermented liquid from pineapple wastes.
    Del Mundo Dacera D; Babel S; Parkpian P
    J Hazard Mater; 2009 Aug; 167(1-3):866-72. PubMed ID: 19232826
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Leaching of heavy metals (Cu, Ni and Zn) and organic matter after sewage sludge application to Mediterranean forest soils.
    Toribio M; Romanyà J
    Sci Total Environ; 2006 Jun; 363(1-3):11-21. PubMed ID: 16316678
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Fractionation of heavy metals in sludge from anaerobic wastewater stabilization ponds in southern Spain.
    Alonso E; Villar P; Santos A; Aparicio I
    Waste Manag; 2006; 26(11):1270-6. PubMed ID: 16338132
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Heavy metals removal from contaminated sewage sludge by naturally fermented raw liquid from pineapple wastes.
    Dacera Ddel M; Babel S
    Water Sci Technol; 2007; 56(7):145-52. PubMed ID: 17951878
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Sequential extraction of heavy metals during composting of sewage sludge.
    Amir S; Hafidi M; Merlina G; Revel JC
    Chemosphere; 2005 May; 59(6):801-10. PubMed ID: 15811408
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Purification capacity of a highly loaded laboratory scale tidal flow reed bed system with effluent recirculation.
    Zhao YQ; Sun G; Allen SJ
    Sci Total Environ; 2004 Sep; 330(1-3):1-8. PubMed ID: 15325153
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Heavy metal fate in pilot-scale sludge drying reed beds under various design and operation conditions.
    Stefanakis AI; Tsihrintzis VA
    J Hazard Mater; 2012 Apr; 213-214():393-405. PubMed ID: 22405610
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Reed bed systems for sludge treatment: case studies in Italy.
    Masciandaro G; Iannelli R; Chiarugi M; Peruzzi E
    Water Sci Technol; 2015; 72(7):1043-50. PubMed ID: 26398018
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Stabilization of heavy metals in wastewater treatment sludge from power plants air heater washing.
    Saeedi M; Amini HR
    Waste Manag Res; 2009 May; 27(3):274-80. PubMed ID: 19423607
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Moisture distribution in activated sludges: a review.
    Vaxelaire J; Cézac P
    Water Res; 2004 May; 38(9):2214-29. PubMed ID: 15142782
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mineralisation of hazardous organic compounds in a sludge reed bed and sludge storage.
    Nielsen S
    Water Sci Technol; 2005; 51(9):109-17. PubMed ID: 16042249
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Chemical treatment of sludge: in-depth study on toxic metal removal efficiency, dewatering ability and fertilizing property preservation.
    Beauchesne I; Cheikh RB; Mercier G; Blais JF; Ouarda T
    Water Res; 2007 May; 41(9):2028-38. PubMed ID: 17360019
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Electrokinetic enhancement removal of heavy metals from industrial wastewater sludge.
    Yuan C; Weng CH
    Chemosphere; 2006 Sep; 65(1):88-96. PubMed ID: 16643980
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Studies on land application of sewage sludge and its limiting factors.
    Wang X; Chen T; Ge Y; Jia Y
    J Hazard Mater; 2008 Dec; 160(2-3):554-8. PubMed ID: 18456400
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Metals removal from soil, fly ash and sewage sludge leachates by precipitation and dewatering properties of the generated sludge.
    Djedidi Z; Bouda M; Souissi MA; Ben Cheikh R; Mercier G; Tyagi RD; Blais JF
    J Hazard Mater; 2009 Dec; 172(2-3):1372-82. PubMed ID: 19713039
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Evaluation for agricultural usage with speciation of heavy metals in a municipal sewage sludge.
    Hanay O; Hasar H; Kocer NN; Aslan S
    Bull Environ Contam Toxicol; 2008 Jul; 81(1):42-6. PubMed ID: 18551239
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Compact vertical flow constructed wetland systems--first two years' performance.
    Weedon CM
    Water Sci Technol; 2003; 48(5):15-23. PubMed ID: 14621143
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Assessment of a Danish sludge treatment reed bed system and a stockpile area, using substance flow analysis.
    Larsen JD; Nielsen SM; Scheutz C
    Water Sci Technol; 2017 Nov; 76(9-10):2291-2303. PubMed ID: 29144287
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.