BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 14621169)

  • 1. The effect of wastewater discharge on biomass production and nutrient content of Cyperus papyrus and Miscanthidium violaceum in the Nakivubo wetland, Kampala, Uganda.
    Kansiime F; Nalubega M; van Bruggen JJ; Denny P
    Water Sci Technol; 2003; 48(5):233-40. PubMed ID: 14621169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparative study of Cyperus papyrus and Miscanthidium violaceum-based constructed wetlands for wastewater treatment in a tropical climate.
    Kyambadde J; Kansiime F; Gumaelius L; Dalhammar G
    Water Res; 2004 Jan; 38(2):475-85. PubMed ID: 14675660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distribution and retention of faecal coliforms in the Nakivubo wetland in Kampala, Uganda.
    Kansiime F; van Bruggen JJ
    Water Sci Technol; 2001; 44(11-12):199-206. PubMed ID: 11804095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interactive effects of nitrogen and phosphorus loadings on nutrient removal from simulated wastewater using Schoenoplectus validus in wetland microcosms.
    Zhang Z; Rengel Z; Meney K
    Chemosphere; 2008 Aug; 72(11):1823-8. PubMed ID: 18561977
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomass production of papyrus (Cyperus papyrus) in constructed wetland treating low-strength domestic wastewater.
    Perbangkhem T; Polprasert C
    Bioresour Technol; 2010 Jan; 101(2):833-5. PubMed ID: 19758797
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitrogen and phosphorus removal from plant nursery runoff in vegetated and unvegetated subsurface flow wetlands.
    Huett DO; Morris SG; Smith G; Hunt N
    Water Res; 2005 Sep; 39(14):3259-72. PubMed ID: 16023175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nutrient removal and plant biomass in a subsurface flow constructed wetland in Brisbane, Australia.
    Browning K; Greenway M
    Water Sci Technol; 2003; 48(5):183-9. PubMed ID: 14621163
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Suitability of macrophytes for nutrient removal from surface flow constructed wetlands receiving secondary treated sewage effluent in Queensland, Australia.
    Greenway M
    Water Sci Technol; 2003; 48(2):121-8. PubMed ID: 14510202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The impact of biomass harvesting on phosphorus uptake by wetland plants.
    Kim SY; Geary PM
    Water Sci Technol; 2001; 44(11-12):61-7. PubMed ID: 11804158
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nutrient removal from piggery effluent using vertical flow constructed wetlands in southern Brazil.
    Sezerino PH; Reginatto V; Santos MA; Kayser K; Kunst S; Philippi LS; Soares HM
    Water Sci Technol; 2003; 48(2):129-35. PubMed ID: 14510203
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of nutrients in various types of constructed wetlands.
    Vymazal J
    Sci Total Environ; 2007 Jul; 380(1-3):48-65. PubMed ID: 17078997
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of plant uptake on the removal of organic matter and nutrients in subsurface flow constructed wetlands: a simulation study.
    Langergraber G
    Water Sci Technol; 2005; 51(9):213-23. PubMed ID: 16042261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potential of constructed wetlands in treating the eutrophic water: evidence from Taihu Lake of China.
    Li L; Li Y; Biswas DK; Nian Y; Jiang G
    Bioresour Technol; 2008 Apr; 99(6):1656-63. PubMed ID: 17532209
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential use of mangrove plantation as constructed wetland for municipal wastewater treatment.
    Boonsong K; Piyatiratitivorakul S; Patanaponpaiboon P
    Water Sci Technol; 2003; 48(5):257-66. PubMed ID: 14621172
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nutrient minimisation in the pulp and paper industry: an overview.
    Slade AH; Ellis RJ; vanden Heuvel M; Stuthridge TR
    Water Sci Technol; 2004; 50(3):111-22. PubMed ID: 15461405
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Treatment of freshwater fish farm effluent using constructed wetlands: the role of plants and substrate.
    Naylor S; Brlsson J; Labelle MA; Drizo A; Comeau Y
    Water Sci Technol; 2003; 48(5):215-22. PubMed ID: 14621167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in plant biomass and nutrient removal over 3 years in a constructed wetland in Cairns, Australia.
    Greenway M; Woolley A
    Water Sci Technol; 2001; 44(11-12):303-10. PubMed ID: 11804111
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A constructed surface flow wetland for treating agricultural waste waters.
    Borin M; Bonaiti G; Santamaria G; Giardini L
    Water Sci Technol; 2001; 44(11-12):523-30. PubMed ID: 11804144
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving the effluent of small wastewater treatment plants by bacteria reduction and nutrient removal with an algal biofilm.
    Schumacher G; Sekoulov I
    Water Sci Technol; 2003; 48(2):373-80. PubMed ID: 14510233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitrogen and phosphorus variation in shallow groundwater and assimilation in plants in complex riparian buffer zones.
    Kuusemets V; Mander U; Lõhmus K; Ivask M
    Water Sci Technol; 2001; 44(11-12):615-22. PubMed ID: 11804159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.