These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 1462135)
1. Enamel structure in astrapotheres and its functional implications. Rensberger JM; Pfretzschner HU Scanning Microsc; 1992 Jun; 6(2):495-508; discussion 508-10. PubMed ID: 1462135 [TBL] [Abstract][Full Text] [Related]
2. The prism pattern of rat molar enamel: a scanning electron microscope study. Risnes S Am J Anat; 1979 Jun; 155(2):245-57. PubMed ID: 474447 [TBL] [Abstract][Full Text] [Related]
3. Effect of prism orientation and loading direction on contact stresses in prismatic enamel of primates: implications for interpreting wear patterns. Shimizu D; Macho GA; Spears IR Am J Phys Anthropol; 2005 Apr; 126(4):427-34. PubMed ID: 15386229 [TBL] [Abstract][Full Text] [Related]
4. Enamel microstructure in Lemuridae (Mammalia, Primates): assessment of variability. Maas MC Am J Phys Anthropol; 1994 Oct; 95(2):221-41. PubMed ID: 7802097 [TBL] [Abstract][Full Text] [Related]
5. Fine structure of the inner enamel in human permanent teeth. Kodaka T; Kuroiwa M; Abe M Scanning Microsc; 1990 Dec; 4(4):975-85. PubMed ID: 2094013 [TBL] [Abstract][Full Text] [Related]
6. Distribution and structure of the initial dental enamel formed in incisors of young wild-type and Tabby mice. Sehic A; Peterkova R; Lesot H; Risnes S Eur J Oral Sci; 2009 Dec; 117(6):644-54. PubMed ID: 20121926 [TBL] [Abstract][Full Text] [Related]
7. Cracks in fossil enamels resulting from premortem vs. postmortem events. Rensberger JM Scanning Microsc; 1987 Jun; 1(2):631-45. PubMed ID: 3616562 [TBL] [Abstract][Full Text] [Related]
9. Multiplane sectioning and scanning electron microscopy as a method for studying the three-dimensional structure of mature dental enamel. Risnes S Scanning Microsc; 1987 Dec; 1(4):1893-902. PubMed ID: 3324328 [TBL] [Abstract][Full Text] [Related]
10. Enamel microstructure and microstrain in the fracture of human and pig molar cusps. Popowics TE; Rensberger JM; Herring SW Arch Oral Biol; 2004 Aug; 49(8):595-605. PubMed ID: 15196977 [TBL] [Abstract][Full Text] [Related]
11. Australopithecus anamensis: a finite-element approach to studying the functional adaptations of extinct hominins. Macho GA; Shimizu D; Jiang Y; Spears IR Anat Rec A Discov Mol Cell Evol Biol; 2005 Apr; 283(2):310-8. PubMed ID: 15747349 [TBL] [Abstract][Full Text] [Related]
12. Structural and calcification patterns of the neonatal line in the enamel of human deciduous teeth. Kodaka T; Sano T; Higashi S Scanning Microsc; 1996; 10(3):737-43; discussion 743-4. PubMed ID: 9813636 [TBL] [Abstract][Full Text] [Related]
13. Effect of enamel prism decussation and chemical composition on the biomechanical behavior of dental tissue: a theoretical approach to determine the loading conditions to which modern human teeth are adapted. Shimizu D; Macho GA Anat Rec (Hoboken); 2008 Feb; 291(2):175-82. PubMed ID: 18085630 [TBL] [Abstract][Full Text] [Related]
19. The enamel microstructures of bovine mandibular incisors. Wang C; Li Y; Wang X; Zhang L; Tiantang ; Fu B Anat Rec (Hoboken); 2012 Oct; 295(10):1698-706. PubMed ID: 22837182 [TBL] [Abstract][Full Text] [Related]
20. The initial process of enamel prism arrangement and its relation to the Hunter-Schreger bands in dog teeth. Hanaizumi Y; Yokota R; Domon T; Wakita M; Kozawa Y Arch Histol Cytol; 2010; 73(1):23-36. PubMed ID: 21471664 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]