These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 14621996)
1. Structural basis for the altered activity of Gly794 variants of Escherichia coli beta-galactosidase. Juers DH; Hakda S; Matthews BW; Huber RE Biochemistry; 2003 Nov; 42(46):13505-11. PubMed ID: 14621996 [TBL] [Abstract][Full Text] [Related]
2. Ser-796 of β-galactosidase (Escherichia coli) plays a key role in maintaining a balance between the opened and closed conformations of the catalytically important active site loop. Jancewicz LJ; Wheatley RW; Sutendra G; Lee M; Fraser ME; Huber RE Arch Biochem Biophys; 2012 Jan; 517(2):111-22. PubMed ID: 22155115 [TBL] [Abstract][Full Text] [Related]
3. Importance of Arg-599 of β-galactosidase (Escherichia coli) as an anchor for the open conformations of Phe-601 and the active-site loop. Dugdale ML; Vance ML; Wheatley RW; Driedger MR; Nibber A; Tran A; Huber RE Biochem Cell Biol; 2010 Dec; 88(6):969-79. PubMed ID: 21102659 [TBL] [Abstract][Full Text] [Related]
4. Role of Met-542 as a guide for the conformational changes of Phe-601 that occur during the reaction of β-galactosidase (Escherichia coli). Dugdale ML; Dymianiw DL; Minhas BK; D'Angelo I; Huber RE Biochem Cell Biol; 2010 Oct; 88(5):861-9. PubMed ID: 20921997 [TBL] [Abstract][Full Text] [Related]
5. Trp-999 of beta-galactosidase (Escherichia coli) is a key residue for binding, catalysis, and synthesis of allolactose, the natural lac operon inducer. Huber RE; Hakda S; Cheng C; Cupples CG; Edwards RA Biochemistry; 2003 Feb; 42(6):1796-803. PubMed ID: 12578395 [TBL] [Abstract][Full Text] [Related]
6. Substitution for Asn460 cripples β-galactosidase (Escherichia coli) by increasing substrate affinity and decreasing transition state stability. Wheatley RW; Kappelhoff JC; Hahn JN; Dugdale ML; Dutkoski MJ; Tamman SD; Fraser ME; Huber RE Arch Biochem Biophys; 2012 May; 521(1-2):51-61. PubMed ID: 22446164 [TBL] [Abstract][Full Text] [Related]
7. His-357 of beta-galactosidase (Escherichia coli) interacts with the C3 hydroxyl in the transition state and helps to mediate catalysis. Roth NJ; Rob B; Huber RE Biochemistry; 1998 Jul; 37(28):10099-107. PubMed ID: 9665715 [TBL] [Abstract][Full Text] [Related]
8. Increased folding stability of TEM-1 beta-lactamase by in vitro selection. Kather I; Jakob RP; Dobbek H; Schmid FX J Mol Biol; 2008 Oct; 383(1):238-51. PubMed ID: 18706424 [TBL] [Abstract][Full Text] [Related]
9. An allolactose trapped at the lacZ β-galactosidase active site with its galactosyl moiety in a (4)H3 conformation provides insights into the formation, conformation, and stabilization of the transition state. Wheatley RW; Huber RE Biochem Cell Biol; 2015 Dec; 93(6):531-40. PubMed ID: 26291713 [TBL] [Abstract][Full Text] [Related]
10. Mutational analysis of Thermus caldophilus GK24 beta-glycosidase: role of His119 in substrate binding and enzyme activity. Oh EJ; Lee YJ; Chol JJ; Seo MS; Lee MS; Kim GA; Kwon ST J Microbiol Biotechnol; 2008 Feb; 18(2):287-94. PubMed ID: 18309273 [TBL] [Abstract][Full Text] [Related]
11. Crystal structures and mechanism of 6-phospho-beta-galactosidase from Lactococcus lactis. Wiesmann C; Hengstenberg W; Schulz GE J Mol Biol; 1997 Jun; 269(5):851-60. PubMed ID: 9223646 [TBL] [Abstract][Full Text] [Related]
12. A study of the relationships of interactions between Asp-201, Na+ or K+, and galactosyl C6 hydroxyl and their effects on binding and reactivity of beta-galactosidase. Xu J; McRae MA; Harron S; Rob B; Huber RE Biochem Cell Biol; 2004 Apr; 82(2):275-84. PubMed ID: 15060622 [TBL] [Abstract][Full Text] [Related]
13. T-state inhibitors of E. coli aspartate transcarbamoylase that prevent the allosteric transition. Heng S; Stieglitz KA; Eldo J; Xia J; Cardia JP; Kantrowitz ER Biochemistry; 2006 Aug; 45(33):10062-71. PubMed ID: 16906764 [TBL] [Abstract][Full Text] [Related]
14. Engineering the substrate specificity of Escherichia coli asparaginase. II. Selective reduction of glutaminase activity by amino acid replacements at position 248. Derst C; Henseling J; Röhm KH Protein Sci; 2000 Oct; 9(10):2009-17. PubMed ID: 11106175 [TBL] [Abstract][Full Text] [Related]
15. Transient kinetics of formation and reaction of the uridylyl-enzyme form of galactose-1-P uridylyltransferase and its Q168R-variant: insight into the molecular basis of galactosemia. Geeganage S; Frey PA Biochemistry; 1998 Oct; 37(41):14500-7. PubMed ID: 9772178 [TBL] [Abstract][Full Text] [Related]
16. Structural and functional studies on the interaction of sodium dodecyl sulfate with beta-galactosidase. Muga A; Arrondo JL; Bellon T; Sancho J; Bernabeu C Arch Biochem Biophys; 1993 Jan; 300(1):451-7. PubMed ID: 8424679 [TBL] [Abstract][Full Text] [Related]
17. Monitoring the transition from the T to the R state in E.coli aspartate transcarbamoylase by X-ray crystallography: crystal structures of the E50A mutant enzyme in four distinct allosteric states. Stieglitz K; Stec B; Baker DP; Kantrowitz ER J Mol Biol; 2004 Aug; 341(3):853-68. PubMed ID: 15288791 [TBL] [Abstract][Full Text] [Related]
18. Glu-416 of beta-galactosidase (Escherichia coli) is a Mg2+ ligand and beta-galactosidases with substitutions for Glu-416 are inactivated, rather than activated, by MG2+. Roth NJ; Huber RE Biochem Biophys Res Commun; 1996 Feb; 219(1):111-5. PubMed ID: 8619791 [TBL] [Abstract][Full Text] [Related]
19. Domain motions and the open-to-closed conformational transition of an enzyme: a normal mode analysis of S-adenosyl-L-homocysteine hydrolase. Wang M; Borchardt RT; Schowen RL; Kuczera K Biochemistry; 2005 May; 44(19):7228-39. PubMed ID: 15882061 [TBL] [Abstract][Full Text] [Related]
20. Thermodynamic cycle analysis and inhibitor design against beta-lactamase. Roth TA; Minasov G; Morandi S; Prati F; Shoichet BK Biochemistry; 2003 Dec; 42(49):14483-91. PubMed ID: 14661960 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]