These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 14622247)

  • 1. Protein stabilization by compatible solutes. Effect of diglycerol phosphate on the dynamics of Desulfovibrio gigas rubredoxin studied by NMR.
    Lamosa P; Turner DL; Ventura R; Maycock C; Santos H
    Eur J Biochem; 2003 Dec; 270(23):4606-14. PubMed ID: 14622247
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NMR structure of Desulfovibrio gigas rubredoxin: a model for studying protein stabilization by compatible solutes.
    Lamosa P; Brennan L; Vis H; Turner DL; Santos H
    Extremophiles; 2001 Oct; 5(5):303-11. PubMed ID: 11699644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural determinants of protein stabilization by solutes. The important of the hairpin loop in rubredoxins.
    Pais TM; Lamosa P; dos Santos W; Legall J; Turner DL; Santos H
    FEBS J; 2005 Feb; 272(4):999-1011. PubMed ID: 15691333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermostabilization of proteins by diglycerol phosphate, a new compatible solute from the hyperthermophile Archaeoglobus fulgidus.
    Lamosa P; Burke A; Peist R; Huber R; Liu MY; Silva G; Rodrigues-Pousada C; LeGall J; Maycock C; Santos H
    Appl Environ Microbiol; 2000 May; 66(5):1974-9. PubMed ID: 10788369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein thermal stabilization by charged compatible solutes: Computational studies in rubredoxin from Desulfovibrio gigas.
    Micaelo NM; Victor BL; Soares CM
    Proteins; 2008 Aug; 72(2):580-8. PubMed ID: 18247348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduced temperature dependence of collective conformational opening in a hyperthermophile rubredoxin.
    Hernández G; LeMaster DM
    Biochemistry; 2001 Dec; 40(48):14384-91. PubMed ID: 11724550
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Absence of kinetic thermal stabilization in a hyperthermophile rubredoxin indicated by 40 microsecond folding in the presence of irreversible denaturation.
    LeMaster DM; Tang J; Hernández G
    Proteins; 2004 Oct; 57(1):118-27. PubMed ID: 15326598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and characterization of Desulfovibrio gigas rubredoxin and rubredoxin fragments.
    Christensen HE; Hammerstad-Pedersen JM; Holm A; Iversen G; Jensen MH; Ulstrup J
    Eur J Biochem; 1994 Aug; 224(1):97-101. PubMed ID: 8076656
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Superoxide reductase: different interaction modes with its two redox partners.
    Almeida RM; Turano P; Moura I; Moura JJ; Pauleta SR
    Chembiochem; 2013 Sep; 14(14):1858-66. PubMed ID: 24038730
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure of rubredoxin from Desulfovibrio gigas to ultra-high 0.68 A resolution.
    Chen CJ; Lin YH; Huang YC; Liu MY
    Biochem Biophys Res Commun; 2006 Oct; 349(1):79-90. PubMed ID: 16930541
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A billion-fold range in acidity for the solvent-exposed amides of Pyrococcus furiosus rubredoxin.
    Anderson JS; Hernández G; Lemaster DM
    Biochemistry; 2008 Jun; 47(23):6178-88. PubMed ID: 18479148
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling the structure of Pyrococcus furiosus rubredoxin by homology to other X-ray structures.
    Wampler JE; Bradley EA; Stewart DE; Adams MW
    Protein Sci; 1993 Apr; 2(4):640-9. PubMed ID: 8518735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rubredoxin from Desulfovibrio gigas. A molecular model of the oxidized form at 1.4 A resolution.
    Frey M; Sieker L; Payan F; Haser R; Bruschi M; Pepe G; LeGall J
    J Mol Biol; 1987 Oct; 197(3):525-41. PubMed ID: 3441010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NMR and X-ray analysis of structural additivity in metal binding site-swapped hybrids of rubredoxin.
    LeMaster DM; Anderson JS; Wang L; Guo Y; Li H; Hernández G
    BMC Struct Biol; 2007 Dec; 7():81. PubMed ID: 18053245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gd(III) chelates as NMR probes of protein-protein interactions. Case study: rubredoxin and cytochrome c3.
    Almeida RM; Geraldes CF; Pauleta SR; Moura JJ
    Inorg Chem; 2011 Nov; 50(21):10600-7. PubMed ID: 21957905
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contribution of the multi-turn segment in the reversible thermal stability of hyperthermophile rubredoxin: NMR thermal chemical exchange analysis of sequence hybrids.
    LeMaster DM; Tang J; Paredes DI; Hernández G
    Biophys Chem; 2005 Jun; 116(1):57-65. PubMed ID: 15911082
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nuclear-magnetic-resonance determination of the electron self-exchange rate constant of Clostridium pasteurianum rubredoxin.
    Gaillard J; Zhuang-Jackson H; Moulis JM
    Eur J Biochem; 1996 Jun; 238(2):346-9. PubMed ID: 8681944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rubredoxin in crystalline state.
    Sieker LC; Stenkamp RE; LeGall J
    Methods Enzymol; 1994; 243():203-16. PubMed ID: 7830611
    [No Abstract]   [Full Text] [Related]  

  • 19. Analysis of the Desulfovibrio gigas transcriptional unit containing rubredoxin (rd) and rubredoxin-oxygen oxidoreductase (roo) genes and upstream ORFs.
    Silva G; Oliveira S; LeGall J; Xavier AV; Rodrigues-Pousada C
    Biochem Biophys Res Commun; 2001 Jan; 280(2):491-502. PubMed ID: 11162545
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rubredoxin as a paramagnetic relaxation-inducing probe.
    Almeida RM; Pauleta SR; Moura I; Moura JJ
    J Inorg Biochem; 2009 Sep; 103(9):1245-53. PubMed ID: 19651443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.