These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
282 related articles for article (PubMed ID: 14622276)
1. Bilayer localization of membrane-active peptides studied in biomimetic vesicles by visible and fluorescence spectroscopies. Sheynis T; Sykora J; Benda A; Kolusheva S; Hof M; Jelinek R Eur J Biochem; 2003 Nov; 270(22):4478-87. PubMed ID: 14622276 [TBL] [Abstract][Full Text] [Related]
2. The effect of cyclization of magainin 2 and melittin analogues on structure, function, and model membrane interactions: implication to their mode of action. Unger T; Oren Z; Shai Y Biochemistry; 2001 May; 40(21):6388-97. PubMed ID: 11371201 [TBL] [Abstract][Full Text] [Related]
3. Membrane binding and permeation by indolicidin analogs studied by a biomimetic lipid/polydiacetylene vesicle assay. Halevy R; Rozek A; Kolusheva S; Hancock RE; Jelinek R Peptides; 2003 Nov; 24(11):1753-61. PubMed ID: 15019207 [TBL] [Abstract][Full Text] [Related]
4. Comparison of the membrane association of two antimicrobial peptides, magainin 2 and indolicidin. Zhao H; Mattila JP; Holopainen JM; Kinnunen PK Biophys J; 2001 Nov; 81(5):2979-91. PubMed ID: 11606308 [TBL] [Abstract][Full Text] [Related]
5. Interaction of linear cationic peptides with phospholipid membranes and polymers of sialic acid. Kuznetsov AS; Dubovskii PV; Vorontsova OV; Feofanov AV; Efremov RG Biochemistry (Mosc); 2014 May; 79(5):459-68. PubMed ID: 24954597 [TBL] [Abstract][Full Text] [Related]
6. Local pressure changes in lipid bilayers due to adsorption of melittin and magainin-h2 antimicrobial peptides: results from computer simulations. Goliaei A; Santo KP; Berkowitz ML J Phys Chem B; 2014 Nov; 118(44):12673-9. PubMed ID: 25299589 [TBL] [Abstract][Full Text] [Related]
7. Analysis of antimicrobial peptide interactions with hybrid bilayer membrane systems using surface plasmon resonance. Mozsolits H; Wirth HJ; Werkmeister J; Aguilar MI Biochim Biophys Acta; 2001 May; 1512(1):64-76. PubMed ID: 11334625 [TBL] [Abstract][Full Text] [Related]
8. Exploring peptide membrane interaction using surface plasmon resonance: differentiation between pore formation versus membrane disruption by lytic peptides. Papo N; Shai Y Biochemistry; 2003 Jan; 42(2):458-66. PubMed ID: 12525173 [TBL] [Abstract][Full Text] [Related]
9. Orientational and aggregational states of magainin 2 in phospholipid bilayers. Matsuzaki K; Murase O; Tokuda H; Funakoshi S; Fujii N; Miyajima K Biochemistry; 1994 Mar; 33(11):3342-9. PubMed ID: 8136371 [TBL] [Abstract][Full Text] [Related]
10. Interactions of mouse Paneth cell alpha-defensins and alpha-defensin precursors with membranes. Prosegment inhibition of peptide association with biomimetic membranes. Satchell DP; Sheynis T; Shirafuji Y; Kolusheva S; Ouellette AJ; Jelinek R J Biol Chem; 2003 Apr; 278(16):13838-46. PubMed ID: 12574157 [TBL] [Abstract][Full Text] [Related]
11. Release of aqueous contents from phospholipid vesicles induced by cecropin A (1-8)-magainin 2 (1-12) hybrid and its analogues. Kang JH; Shin SY; Jang SY; Lee MK; Hahm KS J Pept Res; 1998 Jul; 52(1):45-50. PubMed ID: 9716250 [TBL] [Abstract][Full Text] [Related]
12. Magainin 2 in phospholipid bilayers: peptide orientation and lipid chain ordering studied by X-ray diffraction. Münster C; Spaar A; Bechinger B; Salditt T Biochim Biophys Acta; 2002 May; 1562(1-2):37-44. PubMed ID: 11988220 [TBL] [Abstract][Full Text] [Related]
13. Peripheral and integral membrane binding of peptides characterized by time-dependent fluorescence shifts: focus on antimicrobial peptide LAH₄. Macháň R; Jurkiewicz P; Olżyńska A; Olšinová M; Cebecauer M; Marquette A; Bechinger B; Hof M Langmuir; 2014 Jun; 30(21):6171-9. PubMed ID: 24807004 [TBL] [Abstract][Full Text] [Related]
14. Nucleation and growth of pores in 1,2-Dimyristoyl-sn-glycero-3-phosphocholine (DMPC) / cholesterol bilayer by antimicrobial peptides melittin, its mutants and cecropin P1. Lyu Y; Fitriyanti M; Narsimhan G Colloids Surf B Biointerfaces; 2019 Jan; 173():121-127. PubMed ID: 30278360 [TBL] [Abstract][Full Text] [Related]
15. Lipopolysaccharides in bacterial membranes act like cholesterol in eukaryotic plasma membranes in providing protection against melittin-induced bilayer lysis. Allende D; McIntosh TJ Biochemistry; 2003 Feb; 42(4):1101-8. PubMed ID: 12549932 [TBL] [Abstract][Full Text] [Related]
16. Peptide-membrane interactions studied by a new phospholipid/polydiacetylene colorimetric vesicle assay. Kolusheva S; Shahal T; Jelinek R Biochemistry; 2000 Dec; 39(51):15851-9. PubMed ID: 11123911 [TBL] [Abstract][Full Text] [Related]
17. Monitoring membrane binding and insertion of peptides by two-color fluorescent label. Postupalenko VY; Shvadchak VV; Duportail G; Pivovarenko VG; Klymchenko AS; Mély Y Biochim Biophys Acta; 2011 Jan; 1808(1):424-32. PubMed ID: 20932819 [TBL] [Abstract][Full Text] [Related]
18. Interaction of bee venom melittin with zwitterionic and negatively charged phospholipid bilayers: a spin-label electron spin resonance study. Kleinschmidt JH; Mahaney JE; Thomas DD; Marsh D Biophys J; 1997 Feb; 72(2 Pt 1):767-78. PubMed ID: 9017202 [TBL] [Abstract][Full Text] [Related]
19. Effect of head group and curvature on binding of the antimicrobial peptide tritrpticin to lipid membranes. Bozelli JC; Sasahara ET; Pinto MR; Nakaie CR; Schreier S Chem Phys Lipids; 2012 May; 165(4):365-73. PubMed ID: 22209923 [TBL] [Abstract][Full Text] [Related]
20. Membrane Activity of Melittin and Magainin-I at Low Peptide-to-Lipid Ratio: Different Types of Pores and Translocation Mechanisms. Volovik MV; Batishchev OV Biomolecules; 2024 Sep; 14(9):. PubMed ID: 39334885 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]