These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 14622405)
1. ParG, a protein required for active partition of bacterial plasmids, has a dimeric ribbon-helix-helix structure. Golovanov AP; Barillà D; Golovanova M; Hayes F; Lian LY Mol Microbiol; 2003 Nov; 50(4):1141-53. PubMed ID: 14622405 [TBL] [Abstract][Full Text] [Related]
2. Protein diversity confers specificity in plasmid segregation. Fothergill TJ; Barillà D; Hayes F J Bacteriol; 2005 Apr; 187(8):2651-61. PubMed ID: 15805511 [TBL] [Abstract][Full Text] [Related]
3. Crystal structure of omega transcriptional repressor encoded by Streptococcus pyogenes plasmid pSM19035 at 1.5 A resolution. Murayama K; Orth P; de la Hoz AB; Alonso JC; Saenger W J Mol Biol; 2001 Dec; 314(4):789-96. PubMed ID: 11733997 [TBL] [Abstract][Full Text] [Related]
4. Architecture of the ParF*ParG protein complex involved in prokaryotic DNA segregation. Barillà D; Hayes F Mol Microbiol; 2003 Jul; 49(2):487-99. PubMed ID: 12828644 [TBL] [Abstract][Full Text] [Related]
5. The unstructured N-terminal tail of ParG modulates assembly of a quaternary nucleoprotein complex in transcription repression. Carmelo E; Barillà D; Golovanov AP; Lian LY; Derome A; Hayes F J Biol Chem; 2005 Aug; 280(31):28683-91. PubMed ID: 15951570 [TBL] [Abstract][Full Text] [Related]
6. The structure of plasmid-encoded transcriptional repressor CopG unliganded and bound to its operator. Gomis-Rüth FX; Solá M; Acebo P; Párraga A; Guasch A; Eritja R; González A; Espinosa M; del Solar G; Coll M EMBO J; 1998 Dec; 17(24):7404-15. PubMed ID: 9857196 [TBL] [Abstract][Full Text] [Related]
7. Segrosome assembly at the pliable parH centromere. Wu M; Zampini M; Bussiek M; Hoischen C; Diekmann S; Hayes F Nucleic Acids Res; 2011 Jul; 39(12):5082-97. PubMed ID: 21378121 [TBL] [Abstract][Full Text] [Related]
8. Recruitment of the ParG segregation protein to different affinity DNA sites. Zampini M; Derome A; Bailey SE; Barillà D; Hayes F J Bacteriol; 2009 Jun; 191(12):3832-41. PubMed ID: 19376860 [TBL] [Abstract][Full Text] [Related]
9. Structural mechanism of ATP-induced polymerization of the partition factor ParF: implications for DNA segregation. Schumacher MA; Ye Q; Barge MT; Zampini M; Barillà D; Hayes F J Biol Chem; 2012 Jul; 287(31):26146-54. PubMed ID: 22674577 [TBL] [Abstract][Full Text] [Related]
10. Structural basis of the role of the NikA ribbon-helix-helix domain in initiating bacterial conjugation. Yoshida H; Furuya N; Lin YJ; Güntert P; Komano T; Kainosho M J Mol Biol; 2008 Dec; 384(3):690-701. PubMed ID: 18929573 [TBL] [Abstract][Full Text] [Related]
11. The anti-toxin ParD of plasmid RK2 consists of two structurally distinct moieties and belongs to the ribbon-helix-helix family of DNA-binding proteins. Oberer M; Zangger K; Prytulla S; Keller W Biochem J; 2002 Jan; 361(Pt 1):41-7. PubMed ID: 11743881 [TBL] [Abstract][Full Text] [Related]
12. The tail of the ParG DNA segregation protein remodels ParF polymers and enhances ATP hydrolysis via an arginine finger-like motif. Barillà D; Carmelo E; Hayes F Proc Natl Acad Sci U S A; 2007 Feb; 104(6):1811-6. PubMed ID: 17261809 [TBL] [Abstract][Full Text] [Related]
13. Iron(II) triggered conformational changes in Escherichia coli fur upon DNA binding: a study using molecular modeling. Hamed MY; Al-Jabour S J Mol Graph Model; 2006 Oct; 25(2):234-46. PubMed ID: 16443380 [TBL] [Abstract][Full Text] [Related]
14. Structural comparison of the PhoB and OmpR DNA-binding/transactivation domains and the arrangement of PhoB molecules on the phosphate box. Okamura H; Hanaoka S; Nagadoi A; Makino K; Nishimura Y J Mol Biol; 2000 Feb; 295(5):1225-36. PubMed ID: 10653699 [TBL] [Abstract][Full Text] [Related]
15. The partition system of multidrug resistance plasmid TP228 includes a novel protein that epitomizes an evolutionarily distinct subgroup of the ParA superfamily. Hayes F Mol Microbiol; 2000 Aug; 37(3):528-41. PubMed ID: 10931346 [TBL] [Abstract][Full Text] [Related]
16. Plasmid transcriptional repressor CopG oligomerises to render helical superstructures unbound and in complexes with oligonucleotides. Costa M; Solà M; del Solar G; Eritja R; Hernández-Arriaga AM; Espinosa M; Gomis-Rüth FX; Coll M J Mol Biol; 2001 Jul; 310(2):403-17. PubMed ID: 11428897 [TBL] [Abstract][Full Text] [Related]
17. Solution structure of the Pseudomonas putida protein PpPutA45 and its DNA complex. Halouska S; Zhou Y; Becker DF; Powers R Proteins; 2009 Apr; 75(1):12-27. PubMed ID: 18767154 [TBL] [Abstract][Full Text] [Related]
18. Structural features of the plasmid pMV158-encoded transcriptional repressor CopG, a protein sharing similarities with both helix-turn-helix and beta-sheet DNA binding proteins. Acebo P; García de Lacoba M; Rivas G; Andreu JM; Espinosa M; del Solar G Proteins; 1998 Aug; 32(2):248-61. PubMed ID: 9714164 [TBL] [Abstract][Full Text] [Related]
19. Structure of FitAB from Neisseria gonorrhoeae bound to DNA reveals a tetramer of toxin-antitoxin heterodimers containing pin domains and ribbon-helix-helix motifs. Mattison K; Wilbur JS; So M; Brennan RG J Biol Chem; 2006 Dec; 281(49):37942-51. PubMed ID: 16982615 [TBL] [Abstract][Full Text] [Related]
20. The solution structure of ParD, the antidote of the ParDE toxin antitoxin module, provides the structural basis for DNA and toxin binding. Oberer M; Zangger K; Gruber K; Keller W Protein Sci; 2007 Aug; 16(8):1676-88. PubMed ID: 17656583 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]