These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 14622925)
1. A combined blockade of glycine and calcium-dependent potassium channels abolishes the respiratory rhythm. Büsselberg D; Bischoff AM; Richter DW Neuroscience; 2003; 122(3):831-41. PubMed ID: 14622925 [TBL] [Abstract][Full Text] [Related]
2. Role of fast inhibitory synaptic mechanisms in respiratory rhythm generation in the maturing mouse. Paton JF; Richter DW J Physiol; 1995 Apr; 484 ( Pt 2)(Pt 2):505-21. PubMed ID: 7602541 [TBL] [Abstract][Full Text] [Related]
3. Reorganisation of respiratory network activity after loss of glycinergic inhibition. Büsselberg D; Bischoff AM; Paton JF; Richter DW Pflugers Arch; 2001 Jan; 441(4):444-9. PubMed ID: 11212206 [TBL] [Abstract][Full Text] [Related]
4. Calcium-regulated potassium currents secure respiratory rhythm generation after loss of glycinergic inhibition. Zhao MG; Hülsmann S; Winter SM; Dutschmann M; Richter DW Eur J Neurosci; 2006 Jul; 24(1):145-54. PubMed ID: 16800867 [TBL] [Abstract][Full Text] [Related]
5. Respiratory rhythm generation and synaptic inhibition of expiratory neurons in pre-Bötzinger complex: differential roles of glycinergic and GABAergic neural transmission. Shao XM; Feldman JL J Neurophysiol; 1997 Apr; 77(4):1853-60. PubMed ID: 9114241 [TBL] [Abstract][Full Text] [Related]
6. GABAA and glycine receptors in regulation of intercostal and abdominal expiratory activity in vitro in neonatal rat. Iizuka M J Physiol; 2003 Sep; 551(Pt 2):617-33. PubMed ID: 12909685 [TBL] [Abstract][Full Text] [Related]
7. Postnatal changes in the mammalian respiratory network as revealed by the transverse brainstem slice of mice. Ramirez JM; Quellmalz UJ; Richter DW J Physiol; 1996 Mar; 491 ( Pt 3)(Pt 3):799-812. PubMed ID: 8815212 [TBL] [Abstract][Full Text] [Related]
8. Role of synaptic inhibition in turtle respiratory rhythm generation. Johnson SM; Wilkerson JE; Wenninger MR; Henderson DR; Mitchell GS J Physiol; 2002 Oct; 544(Pt 1):253-65. PubMed ID: 12356896 [TBL] [Abstract][Full Text] [Related]
9. Biphasic effects of substance P on respiratory activity and respiration-related neurones in ventrolateral medulla in the neonatal rat brainstem in vitro. Shvarev YN; Lagercrantz H; Yamamoto Y Acta Physiol Scand; 2002 Jan; 174(1):67-84. PubMed ID: 11851598 [TBL] [Abstract][Full Text] [Related]
10. Ionic mechanisms of intrinsic oscillations in neurons of the basolateral amygdaloid complex. Pape HC; Driesang RB J Neurophysiol; 1998 Jan; 79(1):217-26. PubMed ID: 9425193 [TBL] [Abstract][Full Text] [Related]
11. Respiratory activity in brainstem of fetal mice lacking glutamate decarboxylase 65/67 and vesicular GABA transporter. Fujii M; Arata A; Kanbara-Kume N; Saito K; Yanagawa Y; Obata K Neuroscience; 2007 May; 146(3):1044-52. PubMed ID: 17418495 [TBL] [Abstract][Full Text] [Related]
12. Glycinergic inhibition is essential for co-ordinating cranial and spinal respiratory motor outputs in the neonatal rat. Dutschmann M; Paton JF J Physiol; 2002 Sep; 543(Pt 2):643-53. PubMed ID: 12205196 [TBL] [Abstract][Full Text] [Related]
13. Contribution of Ca2+-dependent conductances to membrane potential fluctuations of medullary respiratory neurons of newborn rats in vitro. Onimaru H; Ballanyi K; Homma I J Physiol; 2003 Nov; 552(Pt 3):727-41. PubMed ID: 12937288 [TBL] [Abstract][Full Text] [Related]
14. Are pacemaker properties required for respiratory rhythm generation in adult turtle brain stems in vitro? Johnson SM; Wiegel LM; Majewski DJ Am J Physiol Regul Integr Comp Physiol; 2007 Aug; 293(2):R901-10. PubMed ID: 17522127 [TBL] [Abstract][Full Text] [Related]
15. Effects of eugenol on respiratory burst generation in newborn rat brainstem-spinal cord preparations. Kotani S; Irie S; Izumizaki M; Onimaru H Pflugers Arch; 2018 Feb; 470(2):385-394. PubMed ID: 28963585 [TBL] [Abstract][Full Text] [Related]
16. Intercostal expiratory activity in an in vitro brainstem-spinal cord-rib preparation from the neonatal rat. Iizuka M J Physiol; 1999 Oct; 520 Pt 1(Pt 1):293-302. PubMed ID: 10517820 [TBL] [Abstract][Full Text] [Related]
17. Characterization of the glycinergic input to bipolar cells of the mouse retina. Ivanova E; Müller U; Wässle H Eur J Neurosci; 2006 Jan; 23(2):350-64. PubMed ID: 16420443 [TBL] [Abstract][Full Text] [Related]
18. GABAergic and glycinergic inhibitory mechanisms in the lamprey respiratory control. Bongianni F; Mutolo D; Nardone F; Pantaleo T Brain Res; 2006 May; 1090(1):134-45. PubMed ID: 16630584 [TBL] [Abstract][Full Text] [Related]
19. Stabilization of bursting in respiratory pacemaker neurons. Tryba AK; Peña F; Ramirez JM J Neurosci; 2003 Apr; 23(8):3538-46. PubMed ID: 12716963 [TBL] [Abstract][Full Text] [Related]
20. Anticonvulsant A(1) receptor-mediated adenosine action on neuronal networks in the brainstem-spinal cord of newborn rats. Brockhaus J; Ballanyi K Neuroscience; 2000; 96(2):359-71. PubMed ID: 10683576 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]