These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 14622988)

  • 1. Activation of protein-bound copper ions during early glycation: study on two proteins.
    Argirova MD; Ortwerth BJ
    Arch Biochem Biophys; 2003 Dec; 420(1):176-84. PubMed ID: 14622988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Residual EDTA bound by lens crystallins accounts for their reported resistance to copper-catalyzed oxidative damage.
    Cui XL; Qin C; Zigler JS
    Arch Biochem Biophys; 1994 Jan; 308(1):207-13. PubMed ID: 8311454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glycation of bovine serum albumin by ascorbate in vitro: Possible contribution of the ascorbyl radical?
    Sadowska-Bartosz I; Stefaniuk I; Galiniak S; Bartosz G
    Redox Biol; 2015 Dec; 6():93-99. PubMed ID: 26202868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Presence of dopa and amino acid hydroperoxides in proteins modified with advanced glycation end products (AGEs): amino acid oxidation products as a possible source of oxidative stress induced by AGE proteins.
    Fu S; Fu MX; Baynes JW; Thorpe SR; Dean RT
    Biochem J; 1998 Feb; 330 ( Pt 1)(Pt 1):233-9. PubMed ID: 9461515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transition metal-catalyzed oxidation of ascorbate in human cataract extracts: possible role of advanced glycation end products.
    Saxena P; Saxena AK; Cui XL; Obrenovich M; Gudipaty K; Monnier VM
    Invest Ophthalmol Vis Sci; 2000 May; 41(6):1473-81. PubMed ID: 10798665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions of copper with glycated proteins: possible involvement in the etiology of diabetic neuropathy.
    Eaton JW; Qian M
    Mol Cell Biochem; 2002; 234-235(1-2):135-42. PubMed ID: 12162426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo glycation of bovine lens crystallins.
    Van Boekel MA; Hoenders HJ
    Biochim Biophys Acta; 1992 Sep; 1159(1):99-102. PubMed ID: 1390916
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Major Chromophore Arising from Glucose Degradation and Oxidative Stress Occurrence during Lens Proteins Glycation Induced by Glucose.
    Ávila F; Schmeda-Hirschmann G; Silva E
    Molecules; 2017 Dec; 23(1):. PubMed ID: 29271874
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photosensitization of DNA damage by glycated proteins.
    Wondrak GT; Jacobson EL; Jacobson MK
    Photochem Photobiol Sci; 2002 May; 1(5):355-63. PubMed ID: 12653475
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of Tetradentate Copper Chelators as Potential Anti-Alzheimer Agents.
    Zhang W; Huang D; Huang M; Huang J; Wang D; Liu X; Nguyen M; Vendier L; Mazères S; Robert A; Liu Y; Meunier B
    ChemMedChem; 2018 Apr; 13(7):684-704. PubMed ID: 29420864
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of new specific copper chelators as potential drugs for the treatment of Alzheimer's disease.
    Nguyen M; Robert A; Sournia-Saquet A; Vendier L; Meunier B
    Chemistry; 2014 May; 20(22):6771-85. PubMed ID: 24797103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chelating activity of advanced glycation end-product inhibitors.
    Price DL; Rhett PM; Thorpe SR; Baynes JW
    J Biol Chem; 2001 Dec; 276(52):48967-72. PubMed ID: 11677237
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Autosensitized oxidation of glycated bovine lens proteins irradiated with UVA-visible light at low oxygen concentration.
    Avila F; Matus A; Fuentealba D; Lissi E; Friguet B; Silva E
    Photochem Photobiol Sci; 2008 Jun; 7(6):718-24. PubMed ID: 18528557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reversible precipitation of bovine serum albumin by metal ions and synthesis, structure and reactivity of new tetrathiometallate chelating agents.
    Lee VE; Schulman JM; Stiefel EI; Lee CC
    J Inorg Biochem; 2007 Nov; 101(11-12):1707-18. PubMed ID: 17804073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Early glycation products produce pentosidine cross-links on native proteins. novel mechanism of pentosidine formation and propagation of glycation.
    Chellan P; Nagaraj RH
    J Biol Chem; 2001 Feb; 276(6):3895-903. PubMed ID: 11076948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redox-mediated mechanisms and biological responses of copper-catalyzed reduction of the nitrite ion in vitro.
    Opländer C; Rösner J; Gombert A; Brodski A; Suvorava T; Grotheer V; van Faassen EE; Kröncke KD; Kojda G; Windolf J; Suschek CV
    Nitric Oxide; 2013 Nov; 35():152-64. PubMed ID: 24140456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Site-specific oxidation of histidine residues in glycated insulin mediated by Cu2+.
    Cheng RZ; Kawakishi S
    Eur J Biochem; 1994 Aug; 223(3):759-64. PubMed ID: 8055951
    [TBL] [Abstract][Full Text] [Related]  

  • 18. N epsilon-(carboxymethyl)lysine is a dominant advanced glycation end product (AGE) antigen in tissue proteins.
    Reddy S; Bichler J; Wells-Knecht KJ; Thorpe SR; Baynes JW
    Biochemistry; 1995 Aug; 34(34):10872-8. PubMed ID: 7662668
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thiol oxidase ability of copper ion is specifically retained upon chelation by aldose reductase.
    Balestri F; Moschini R; Cappiello M; Mura U; Del-Corso A
    J Biol Inorg Chem; 2017 Jun; 22(4):559-565. PubMed ID: 28224255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of protein-bound carbonyl groups in the formation of advanced glycation endproducts.
    Liggins J; Furth AJ
    Biochim Biophys Acta; 1997 Aug; 1361(2):123-30. PubMed ID: 9300793
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.